面向MEMS振镜激光雷达系统的近程接收机设计

万岁岁,庞亚军,薛瑞祥,等. 面向MEMS振镜激光雷达系统的近程接收机设计[J]. 光电工程,2024,51(3): 230287. doi: 10.12086/oee.2024.230287
引用本文: 万岁岁,庞亚军,薛瑞祥,等. 面向MEMS振镜激光雷达系统的近程接收机设计[J]. 光电工程,2024,51(3): 230287. doi: 10.12086/oee.2024.230287
Wan S S, Pang Y J, Xue R X, et al. Design of short-range LiDAR receiver based on MEMS mirror[J]. Opto-Electron Eng, 2024, 51(3): 230287. doi: 10.12086/oee.2024.230287
Citation: Wan S S, Pang Y J, Xue R X, et al. Design of short-range LiDAR receiver based on MEMS mirror[J]. Opto-Electron Eng, 2024, 51(3): 230287. doi: 10.12086/oee.2024.230287

面向MEMS振镜激光雷达系统的近程接收机设计

  • 基金项目:
    国家自然科学基金资助项目(61905063);河北省自然科学基金资助项目( F2020202055)
详细信息
    作者简介:
    *通讯作者: 庞亚军 ,yjpang@hebut.edu.cn
  • 中图分类号: TN274

Design of short-range LiDAR receiver based on MEMS mirror

  • Fund Project: Project supported by National Natural Science Foundation of China (61905063), and Natural Science Foundation of Hebei Province (F2020202055).
More Information
  • 针对1550 nm波段铟镓砷探测器小光敏面无法有效接收MEMS较大扫描视场回波的问题,设计了一种适用于近程宽视场的接收装置。接收端光学系统利用像方远心结构作为接收天线,通过仿真在1 mm的光敏面下实现了36°的接收视场,整体相对照度超过95%,集光性能和通光性能较好。同时,接收电路采用T型网络放大结构,结合时刻鉴别电路,利用TDC7200实现高精度时间测量。实验结果表明,飞行时间测量精度在200 ns量程下小于120 ps,在8 m范围内测距精度优于2 ns,能够满足近程探测的需要。

  • Overview: Compared to detection methods such as cameras and millimeter-wave radar, LiDAR (light detection and ranging) utilizes a highly collimated laser beam to obtain target distance, azimuth, shape, and motion information, providing superior three-dimensional perception capabilities. In the early days, LiDAR was primarily used in military, surveying, environmental monitoring, and other fields, given its large size and high cost. However, LiDAR has gradually integrated into the consumer market and played an increasingly crucial role in autonomous driving and intelligent perception, becoming a hot research topic in recent years. The primary functions of LiDAR can be divided into scanning imaging modules. As weight, size, and power consumption become crucial for platforms such as automobiles and drones, traditional mechanical LiDAR systems are evolving toward solid-state scanning approaches. Among various scanning devices, MEMS (micro-electro-mechanical systems) mirrors have become a hot direction in LiDAR scanning due to their small size, low power consumption, and high angular resolution. With the advancement of LiDAR technology, the scanning field of view of MEMS devices continues to increase, resulting in increasingly stringent requirements for matching the emission and reception fields of view.

    The influence of MEMS deflection angle on the received power was derived based on the laser radar equation in this study. Detailed design specifications for the lidar system were analyzed, along with the achievable detection distance range. A suitable receiving scheme for MEMS-based short-range laser radar was proposed, where a single-piece non-spherical mirror was used for beam collimation at the transmitting end, and a small sensitive area InGaAs detector operating at 1550 nm was employed at the receiving end to address the problem of inefficient echo reception for larger scanning fields of the MEMS system. A receiver device suitable for near-range wide field-of-view applications has been designed. The optical system at the receiving end utilizes an afocal telecentric structure as the receiving antenna, achieving a reception field-of-view of 36° at a photosensitive area of 1 mm. The relative illuminance exceeds 95%, demonstrating excellent light collection and transmission characteristics. Additionally, the receiver circuit adopts a T-network amplification structure combined with a moment identification circuit, utilizing the TDC7200 to achieve high-precision time measurements. The flight time measurement accuracy is less than 120 ps within a range of 200 ns, and the overall experimental results demonstrate ranging accuracy better than 2 ns within an 8 m distance, meeting the requirements for near-range detection.

  • 加载中
  • 图 1  系统整体结构示意图

    Figure 1.  System overall structure diagram

    图 2  MEMS扫描光斑阵列。(a)光斑直径等于3 mm; (b)光斑直径等于5 mm

    Figure 2.  MEMS scanning spot array with varying diameters. (a) Spot diameter of 3 mm; (b) Spot diameter of 5 mm

    图 3  不同焦距光斑直径变化

    Figure 3.  Variation of light spot diameter with different focal lengths

    图 4  各偏转角MEMS光斑分布

    Figure 4.  Angular distribution of MEMS light spot deviations

    图 5  MEMS偏转角与回波功率变化关系

    Figure 5.  MEMS deflection angle and echo power correlation

    图 6  接收光学天线结构

    Figure 6.  Optical antenna structure for reception

    图 7  探测器表面光迹图

    Figure 7.  Surface track image of the detector

    图 8  几何圈入能量图

    Figure 8.  Geometric ring entrance energy map

    图 9  不同视场相对照度分布

    Figure 9.  Distribution of relative illuminance in different fields of view

    图 10  大视场回波接收电路

    Figure 10.  Wide angle echo reception circuit

    图 11  TDC7200时间测量电路图

    Figure 11.  Design of TDC7200 time measurement

    图 12  TDC7200内部原理示意图

    Figure 12.  TDC7200 internal working mechanism

    图 13  TDC时间测量流程框图

    Figure 13.  TDC time measurement process flowchart

    图 14  实际测量150 ns统计直方图

    Figure 14.  Histogram of actual measurement with 150 ns

    图 15  实际测量误差

    Figure 15.  Measurement error of TDC in actual conditions

    图 16  接收装置实物图

    Figure 16.  Receiving physical devices

    图 17  6 m处距离测试时间分布

    Figure 17.  Time distribution of testing at a distance of 6 m

    图 18  实际室内场景测试

    Figure 18.  Actual indoor scene testing

    图 19  100 kHz回波波形

    Figure 19.  100 kHz echo waveform

    表 1  光学接收系统指标

    Table 1.  Optical receiver system specifications

    参数指标
    工作波段1550 nm
    全视场角$ \geqslant $30°
    全像高$ \leqslant $1 mm
    F数$ \leqslant $1.4
    入瞳直径$ \geqslant $3 mm
    全视场相对照度$ \geqslant $90%
    天线接收增益$ \geqslant $9.4
    系统长度$ \leqslant $50 mm
    下载: 导出CSV

    表 2  时间测量数据(时间单位:ns)

    Table 2.  Time measurement data (time unit: ns)

    标准时间间隔最大测量值最小测量值测量平均值测量误差标准差
    100100.83899.292100.1030.1030.092
    110110.603109.637110.1280.1280.077
    120120.646119.663120.1370.1370.084
    130130.323129.969130.1350.1350.107
    140140.388139.988140.1740.1740.109
    150150.580149.775150.1780.1780.101
    160160.361159.979160.1850.1850.107
    170170.469169.857170.1790.1790.115
    180180.471179.882180.1860.1860.108
    190190.842189.607190.1950.1950.117
    200200.853199.463200.2190.2190.120
    下载: 导出CSV

    表 3  修正后的实际测距结果

    Table 3.  Revised actual ranging results

    测量距离/m时间真实值/ns时间标准差/ns均值误差/cm
    2.516.9810.4524.71
    319.8110.5592.84
    426.3820.6494.28
    533.7540.7366.31
    639.3540.8719.68
    747.0511.2365.76
    下载: 导出CSV

    表 4  100 kHz回波测试结果

    Table 4.  Results of 100 kHz echo test

    微镜扫描角度/(°)回波幅度/mV测距值/m实际误差/m
    +14.5286
    +12.63177.820.25
    +10.63247.750.22
    +8.53357.680.20
    +6.412773.050.03
    +4.313973.030.02
    +2.217163.020.02
    09573.030.03
    下载: 导出CSV
  • [1]

    Rozsa Z, Sziranyi T. Object detection from a few LIDAR scanning planes[J]. IEEE Trans Intell Veh, 2019, 4(4): 548−560. doi: 10.1109/TIV.2019.2938109

    [2]

    Hanson W S, Jones R E, Jones R H. The Roman military presence at Dalswinton, Dumfriesshire: a reassessment of the evidence from aerial, geophysical and LiDAR survey[J]. Britannia, 2019, 50: 285−320. doi: 10.1017/S0068113X1900031X

    [3]

    Persendt F C, Gomez C. Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs[J]. Geomorphology, 2016, 260: 32−50. doi: 10.1016/j.geomorph.2015.06.047

    [4]

    Zhao G Y, Lian M, Li Y Y, et al. Mobile lidar system for environmental monitoring[J]. Appl Opt, 2017, 56(5): 1506−1516. doi: 10.1364/AO.56.001506

    [5]

    陈海平, 李萌阳, 曹庭分, 等. 基于激光雷达数据的火星表面障碍物识别[J]. 光电工程, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

    Chen H P, Li M Y, Cao T F, et al. Obstacle recognition on Mars surface based on LiDAR data[J]. Opto-Electron Eng, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

    [6]

    Raj T, Hanim Hashim F, Baseri Huddin A, et al. A survey on LiDAR scanning mechanisms[J]. Electronics, 2020, 9(5): 741. doi: 10.3390/electronics9050741

    [7]

    Lee X, Wang C H. Optical design for uniform scanning in MEMS-based 3D imaging lidar[J]. Appl Opt, 2015, 54(9): 2219−2223. doi: 10.1364/AO.54.002219

    [8]

    Schwarz F, Senger F, Albers J, et al. Resonant 1D MEMS mirror with a total optical scan angle of 180° for automotive LiDAR[J]. Proc SPIE, 2020, 11293: 1129309. doi: 10.1117/12.2546035

    [9]

    钟义晖, 龚强, 朱天凤. 基于MEMS高速光学扫描系统[J]. 应用激光, 2021, 41(2): 391−394. doi: 10.14128/j.cnki.al.20214102.391

    Zhong Y H, Gong Q, Zhu T F. High speed optical scanning system based on MEMS[J]. Appl Laser, 2021, 41(2): 391−394. doi: 10.14128/j.cnki.al.20214102.391

    [10]

    Siepmann J P, Rybaltowski A. Integrable ultra-compact, high-resolution, real-time MEMS LADAR for the individual soldier[C]//Proceedings of 2005 IEEE Military Communications Conference, Atlantic City, USA, 2005: 3073–3079. https://doi.org/10.1109/MILCOM.2005.1606131.

    [11]

    Tanahashi Y, Koutsuka Y, Tanimoto R, et al. Development of coaxial 3D-LiDAR systems using MEMS scanners for automotive applications[J]. Proc SPIE, 2018, 10757: 107570E. doi: 10.1117/12.2323693

    [12]

    Lee X, Wang X Y, Cui T X, et al. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting[J]. Opt Express, 2016, 24(14): 15222−15231. doi: 10.1364/OE.24.015222

    [13]

    李启坤, 邱琪. 基于2D微电子机械系统(MEMS)镜全向激光雷达光学系统设计[J]. 应用光学, 2015, 39(4): 460−465. doi: 10.5768/JAO201839.0401003

    Li Q K, Qiu Q. Design on omnidirectional optical system of lidar based on 2D MEMS mirror[J]. J Appl Opt, 2015, 39(4): 460−465. doi: 10.5768/JAO201839.0401003

    [14]

    范娜娜, 王懋, 温少聪, 等. 基于二维MEMS振镜的激光雷达系统的光学设计[J]. 光学技术, 2020, 46(3): 290−294. doi: 10.13741/j.cnki.11-1879/o4.2020.03.005

    Fan N N, Wang M, Wen S C, et al. Optical design for 2D MEMS-based lidar system[J]. Opt Tech, 2020, 46(3): 290−294. doi: 10.13741/j.cnki.11-1879/o4.2020.03.005

    [15]

    Xu F H, Qiao D Y, Xia C F, et al. A semi-coaxial MEMS LiDAR design with independently adjustable detection range and angular resolution[J]. Sens Actuat A Phys, 2021, 326: 112715. doi: 10.1016/j.sna.2021.112715

    [16]

    Ito K, Niclass C, Aoyagi I, et al. System design and performance characterization of a mems-based laser scanning time-of-flight sensor based on a 256×64-pixel single-photon imager[J]. IEEE Photon J, 2013, 5(2): 6800114. doi: 10.1109/JPHOT.2013.2247586

    [17]

    Stann B L, Dammann J F, Giza M M. Progress on MEMS-scanned ladar[J]. Proc SPIE, 2016, 9832: 98320L. doi: 10.1117/12.2223728

    [18]

    李小宝. MEMS大视野扫描激光3D图像传感器关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 61–64. https://doi.org/10.27061/d.cnki.ghgdu.2017.000001.

    Li X B. Research on key technologies of MEMS-based large scanning laser 3D image sensor[D]. Harbin: Harbin Institute of Technology, 2017: 61–64. https://doi.org/10.27061/d.cnki.ghgdu.2017.000001.

    [19]

    罗栋. 基于MEMS微镜扫描的三维激光雷达样机系统设计[D]. 武汉: 华中科技大学, 2019: 62–78. https://doi.org/10.27157/d.cnki.ghzku.2019.004022.

    Luo D. Prototype design of 3D LiDAR system based on MEMS mirror scanning[D]. Wuhan: Huazhong University of Science and Technology, 2019: 62–78. https://doi.org/10.27157/d.cnki.ghzku.2019.004022.

    [20]

    Wang Y Y, Tang P J, Shen L K, et al. LiDAR system using MEMS scanner-based coaxial optical transceiver[C]//Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference, Shenzhen, China, 2020: 166–168. https://doi.org/10.1109/OGC50007.2020.9260456.

    [21]

    陈建光, 倪旭翔, 袁波, 等. SiPM激光雷达阳光下探测概率性能分析[J]. 光电工程, 2021, 48(10): 210196. doi: 10.12086/oee.2021.210196

    Chen J G, Ni X X, Yuan B, et al. Analysis of detection probability performance of SiPM LiDAR under sunlight[J]. Opto-Electron Eng, 2021, 48(10): 210196. doi: 10.12086/oee.2021.210196

    [22]

    杨宏志, 赵长明, 张海洋, 等. 全光纤激光雷达发射和接收光学系统设计与优化[J]. 光学学报, 2016, 36(11): 1106005. doi: 10.3788/AOS201636.1106005

    Yang H Z, Zhao C M, Zhang H Y, et al. Design and optimization of all-fiber lidar transmitting and receiving optical systems[J]. Acta Opt Sin, 2016, 36(11): 1106005. doi: 10.3788/AOS201636.1106005

    [23]

    陈慧敏, 李铁, 刘锡民, 等. 近程激光探测技术[M]. 北京: 北京理工大学出版社, 2018: 124–127.

    Chen H M, Li T, Liu X M, et al. Short-Range Laser Detection Technology[M]. Beijing: Beijing Institute of Technology Press, 2018: 124–127.

    [24]

    熊蓉玲. 红外系统协同探测性能分析[J]. 激光与红外, 2016, 46(5): 575−577. doi: 10.3969/j.issn.1001-5078.2016.05.012

    Xiong R L. Performance analysis on co-detection of infrared systems[J]. Laser Infrared, 2016, 46(5): 575−577. doi: 10.3969/j.issn.1001-5078.2016.05.012

    [25]

    刘肖民. 超强光探测光学系统设计探讨[J]. 应用光学, 1995, 16(1): 5−8.

    Liu X M. Approach to the design of optical system for ultrahigh-light detection[J]. J Appl Opt, 1995, 16(1): 5−8.

    [26]

    刘肖民. 光电探测光学系统无晕接收特性的研究[J]. 应用光学, 1999, 20(5): 5−7.

    Liu X M. The study of non-vignetting receiving features of optical system for electro-optic detecting[J]. J Appl Opt, 1999, 20(5): 5−7.

    [27]

    何武光, 吴健, 王仕璠. 宽视场有增益光学系统设计[J]. 激光杂志, 2006, 27(1): 27−28. doi: 10.3969/j.issn.0253-2743.2006.01.015

    He W G, Wu J, Wang S F. Design of wide-FOV optical system with optical gain[J]. Laser J, 2006, 27(1): 27−28. doi: 10.3969/j.issn.0253-2743.2006.01.015

    [28]

    白雪菲, 冯迪, 秦川, 等. 高精度脉冲激光测距系统设计与实验研究[J]. 激光杂志, 2019, 40(10): 6−10. doi: 10.14016/j.cnki.jgzz.2019.10.006

    Bai X F, Feng D, Qin C, et al. Design and experimental study of high precision pulsed laser ranging system[J]. Laser J, 2019, 40(10): 6−10. doi: 10.14016/j.cnki.jgzz.2019.10.006

  • 加载中

(20)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-11-22
修回日期:  2024-02-22
录用日期:  2024-02-22
刊出日期:  2024-04-05

目录

/

返回文章
返回