融合空频复用和近远场复用的多功能超表面图像显示

周宇翀,丁玮珺,李子乐,等. 融合空频复用和近远场复用的多功能超表面图像显示[J]. 光电工程,2023,50(8): 230153. doi: 10.12086/oee.2023.230153
引用本文: 周宇翀,丁玮珺,李子乐,等. 融合空频复用和近远场复用的多功能超表面图像显示[J]. 光电工程,2023,50(8): 230153. doi: 10.12086/oee.2023.230153
Zhou Y C, Ding W J, Li Z L, et al. Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing[J]. Opto-Electron Eng, 2023, 50(8): 230153. doi: 10.12086/oee.2023.230153
Citation: Zhou Y C, Ding W J, Li Z L, et al. Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing[J]. Opto-Electron Eng, 2023, 50(8): 230153. doi: 10.12086/oee.2023.230153

融合空频复用和近远场复用的多功能超表面图像显示

  • 基金项目:
    国家重点研发计划(2021YFE0205800);国家自然科学基金项目(12204359,62205252);湖北省自然科学基金(2022CFB641);中国博士后科学基金(2022M722448,2022TQ0243)
详细信息
    作者简介:
    通讯作者: 戴琦,daiqiiu@whu.edu.cn 郑国兴,gxzheng@whu.edu.cn
  • 中图分类号: TB34;O43

Multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing

  • Fund Project: Project supported by National Key Research and Development Program of China (2021YFE0205800), National Natural Science Foundation of China (12204359, 62205252), Natural Science Foundation of Hubei Province (2022CFB641), and China Postdoctoral Science Foundation (2022M722448, 2022TQ0243)
More Information
  • 超表面可以在亚波长尺度上对光波的偏振、振幅、频率、相位等基本参量进行精确调控。基于此背景,本文提出并实验验证了一种融合空间频率复用和近远场复用的多功能超表面图像显示技术。其中,近远场复用是利用纳米结构的转角简并性将超表面几何相位调控与光波强度调控相融合,基于模拟退火算法实现近场灰度图像与远场全息图像的独立编码;空间频率复用是将两幅图像的不同空间频率成分叠加作为远场全息图像,可以在不同观察位置分别接收到不同的空间频率信息,对应高频图像和低频图像。实验结果表明,通过优化超表面可以同时在不同工作距离实现三幅独立图像(灰度图像、高频图像及低频图像)的显示,这提升了超表面的信息存储容量。本工作将为超表面多功能复用及其在光学加密、光学防伪等领域的应用提供新思路。

  • Overview: Metasurface, which is capable of flexibly controlling the polarization, amplitude, frequency, and phase of light waves, provides substantial possibilities for the development of high-performance, high-efficiency, and high-integrated optical systems. The precise control of optical properties is achieved mainly by adjusting shapes, geometric parameters, rotation states, multi-atom combination strategies, incident angles, or material refractive indexes of metasurfaces. This feature of multiple design degrees of freedom means that metasurfaces can be utilized for synchronously controlling multiple optical properties, and the information capacity, as well as functionality, can be greatly improved. For example, multiple nanoprinting image switching and encoding can be realized by establishing a coherent pixel design strategy. Near-field nanoprinting and far-field holographic image displays are simultaneously accomplished with a single metasurface, which combines amplitude and phase modulations by introducing orientation degeneracy.

    In this paper, we propose and experimentally verify a multifunctional metasurface enabled by merging spatial frequency multiplexing and near- and far-field multiplexing. In near- and far-field multiplexing, the geometric phase modulation and the light intensity modulation are combined by introducing the orientation degeneracy of nanostructures. A “one-to-four” strategy is established to generate four different phase delays while keeping identical light intensity, then near-field nanoprinting and far-field holographic image displays are both successfully achieved with a single-sized metasurface. As is known, people receive different spatial frequency components of an image when the observation distance changes. Based on this principle, we chose the high-frequency component of an image (P1) and the low-frequency component of another image (P2) as the high-frequency and low-frequency images, and designed their hybrid image to be the target holographic image for spatial frequency multiplexing. In our work, SOI material is used to design and fabricate the multifunctional metasurface, and experimental results verify that three images (a grayscale image, a high-frequency image, and a low-frequency image) can be easily observed at different distances. Specifically, a polarizer and an analyzer are employed to realize specific polarization control for the near-field grayscale image decoding. On the other hand, the circularly polarized laser light is used to reconstruct the holographic image in the far-field, and then another two images can be decoded by high- and low-pass filtering. This work provides a new path for multifunctional metasurface design, and possesses broad applications in optical encryption, optical anti-counterfeiting, and many other related fields.

  • 加载中
  • 图 1  融合空频复用和近远场复用的多功能超表面图像显示示意图

    Figure 1.  Schematic diagram of the multifunctional metasurface image display enabled by merging spatial frequency multiplexing and near- and far-field multiplexing

    图 2  超表面单元结构及调控原理。(a)纳米结构单元示意图;(b)几何相位延迟量与纳米砖转角的关系;(c)出射光强度与纳米砖转角的关系

    Figure 2.  Unit-cell structure and optical manipulation principle of the multifunctional metasurface. (a) Illustration of the nanostructure unit-cell; (b) The relationship between geometric phase delay and the orientation angle of the nanobrick; (c) The relationship between the output intensity and the orientation angle of the nanobrick

    图 3  人眼观测模型与空间频率复用示例。(a)人眼对正弦波图像的观测示意;(b)对比敏感函数;(c)图像P1;(d)图像P2;(e)取图像P1的高频部分与图像P2的低频部分并进行合成得到混合图像Pi

    Figure 3.  Observation characteristics of the human eye and an example of spatial frequency multiplexing. (a) Illustration of the human eye's observation of a sine wave image; (b) Contrast sensitive functions; (c) Image P1; (d) Image P2; (e) Merged image Pi generated bycombining the high-frequency part of P1 and the low-frequency part of P2

    图 4  多功能超表面设计流程与优化结果。(a)多功能超表面设计流程;(b)多功能超表面纳米砖阵列转角分布优化结果;(c)多功能超表面纳米结构单元的反射率分布; (d-g)不同波长下相位延迟总量与纳米砖转角的关系

    Figure 4.  Design flow chart and optimization results of the multifunctional metasurface. (a) Design flow chart of the multifunctional metasurface; (b) The final optimized orientation distribution of the multifunctional metasurface; (c) Simulated reflectivity of the cross-polarized and co-polarized parts under a normal circularly polarized light incidence; (d-g) The relationship between the total phase delay and the orientation angle of the nanobrick at different wavelengths

    图 5  SOI超表面样片加工工艺流程及样片局部电镜图。 (a) SOI超表面样片加工工艺流程;(b)样片局部电镜图

    Figure 5.  SOI metasurface sample fabrication process and localized SEM image of the sample. (a) SOI metasurface sample fabrication process; (b) Partial scanning electron microscope image of the sample

    图 6  多功能超表面的近、远场实验装置。(a)近场观测灰度纳米印刷图像的显微镜装置;(b)远场全息实验光路

    Figure 6.  Experimental setups of the multifunctional metasurface. (a) General sketch and detailed illustration of the microscope to observe the grayscale nanoprinting image in the near-field; (b) The experimental setup to observe the holographic image in the far-field

    图 7  近场纳米印刷图像的实验结果。(a)白光照射下的实验图像;(b-e)不同波长下的实验图像

    Figure 7.  Experimentally captured nanoprinting images in the near-field. (a) Experimental nanoprinting image under white light illumination; (b-e) Experimental nanoprinting images at different wavelengths

    图 8  远场全息图像设计与实验结果。(a)全息目标图像;(b-e)不同波长下的全息图像实验结果;(f)全息目标图像中提取的高频信息部分;(g-j)不同波长下的全息图像实验结果中提取的高频信息部分;(k)全息目标图像中提取的低频信息部分;(g-j)不同波长下的全息图像实验结果中提取的低频信息部分

    Figure 8.  Design and experimental results of holographic images in the far-field. (a) Designed holographic image; (b-e) Experimentally captured holographic images at different wavelengths; (f) High spatial frequency components of the designed image; (g-j) High spatial frequency components of experimentally captured holographic images at different wavelengths; (k) Low spatial frequency component of the designed image; (l-o) Low spatial frequency components of experimentally captured holographic images at different wavelengths

  • [1]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    [2]

    Zhang Y Z, Lin P C, Huo P C, et al. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging[J]. Nano Lett, 2023, 23(7): 2991−2997. doi: 10.1021/acs.nanolett.3c00388

    [3]

    Gao H, Wang Y X, Fan X H, et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Sci Adv, 2020, 6(28): eaba8595. doi: 10.1126/sciadv.aba8595

    [4]

    Shi T, Deng Z L, Geng G Z, et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nat Commun, 2022, 13(1): 4111. doi: 10.1038/s41467-022-31877-1

    [5]

    Wang D Y, Liu F F, Liu T, et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 2021, 10(1): 67. doi: 10.1038/s41377-021-00504-x

    [6]

    Yu B B, Wen J, Chen L, et al. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces[J]. Photonics Res, 2020, 8(7): 1148−1154. doi: 10.1364/PRJ.390202

    [7]

    Xu Z T, Huang L L, Li X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Adv Opt Mater, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169

    [8]

    Huang K, Deng J, Leong H S, et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti‐counterfeiting[J]. Laser Photonics Rev, 2019, 13(5): 1800289. doi: 10.1002/lpor.201800289

    [9]

    Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    [10]

    Fu R, Chen K X, Li Z L, et al. Metasurface-based nanoprinting: principle, design and advances[J]. Opto-Electron Sci, 2022, 1(10): 220011. doi: 10.29026/oes.2022.220011

    [11]

    Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504−1505. doi: 10.1364/OPTICA.3.001504

    [12]

    Li Z L, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382−9389. doi: 10.1021/acsnano.7b04868

    [13]

    Tan S J, Zhang L, Zhu D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Lett, 2014, 14(7): 4023−4029. doi: 10.1021/nl501460x

    [14]

    Sun S, Zhou Z X, Zhang C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445−4452. doi: 10.1021/acsnano.7b00415

    [15]

    Gao B F, Ren M X, Wu W, et al. Lithium niobate metasurfaces[J]. Laser Photonics Rev, 2019, 13(5): 1800312. doi: 10.1002/lpor.201800312

    [16]

    Yue F Y, Zhang C M, Zang X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light Sci Appl, 2018, 7: 17129. doi: 10.1038/lsa.2017.129

    [17]

    Dai Q, Deng L G, Deng J, et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Opt Express, 2019, 27(20): 27927−27935. doi: 10.1364/OE.27.027927

    [18]

    许可,王星儿,范旭浩,等. 超表面全息术:从概念到实现[J]. 光电工程, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    Xu K, Wang X E, Fan X H, et al. Meta-holography: from concept to realization[J]. Opto-Electron Eng, 2022, 49(10): 220183. doi: 10.12086/oee.2022.220183

    [19]

    Chen W T, Zhu A Y, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nat Nanotechnol, 2018, 13(3): 220−226. doi: 10.1038/s41565-017-0034-6

    [20]

    Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nat Commun, 2015, 6: 7069. doi: 10.1038/ncomms8069

    [21]

    Pahlevaninezhad H, Khorasaninejad M, Huang Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nat Photonics, 2018, 12(9): 540−547. doi: 10.1038/s41566-018-0224-2

    [22]

    Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light Sci Appl, 2018, 7: 85. doi: 10.1038/s41377-018-0078-x

    [23]

    Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    [24]

    Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4(10): 210013. doi: 10.29026/oea.2021.210013

    [25]

    Zheng G X, Liu G G, Kenney M G, et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays[J]. Opt Express, 2016, 24(6): 6749−6757. doi: 10.1364/OE.24.006749

    [26]

    Li Z L, Zheng G X, He P A, et al. All-silicon nanorod-based Dammann gratings[J]. Opt Lett, 2015, 40(18): 4285−4288. doi: 10.1364/OL.40.004285

    [27]

    Wan C W, Yang R, Shi Y Y, et al. Visible-frequency meta-gratings for light steering, beam splitting and absorption tunable functionality[J]. Opt Express, 2019, 27(26): 37318−37326. doi: 10.1364/OE.27.037318

    [28]

    Shen Z C, Zhao F, Jin C Q, et al. Monocular metasurface camera for passive single-shot 4D imaging[J]. Nat Commun, 2023, 14(1): 1035. doi: 10.1038/s41467-023-36812-6

    [29]

    Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    [30]

    Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558−1563. doi: 10.1021/acsphotonics.6b00392

    [31]

    Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109. doi: 10.1126/science.aas9768

    [32]

    Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 2019, 13(6): 390−396. doi: 10.1038/s41566-019-0394-6

    [33]

    Bao Y J, Yu Y, Xu H F, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Adv Funct Mater, 2018, 28(51): 1805306. doi: 10.1002/adfm.201805306

    [34]

    Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    [35]

    Guo J Y, Wang T, Quan B G, et al. Polarization multiplexing for double images display[J]. Opto-Electron Adv, 2019, 2(7): 180029. doi: 10.29026/oea.2019.180029

    [36]

    Deng L G, Deng J, Guan Z Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 2020, 9: 101. doi: 10.1038/s41377-020-0327-7

    [37]

    Li J X, Chen Y Q, Hu Y Q, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display[J]. ACS Nano, 2020, 14(7): 7892−7898. doi: 10.1021/acsnano.0c01469.

    [38]

    Deng J, Deng L G, Guan Z Q, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Lett, 2020, 20(3): 1830−1838. doi: 10.1021/acs.nanolett.9b05053

    [39]

    Wen D D, Cadusch J J, Meng J J, et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Adv Funct Mater, 2020, 30(3): 1906415. doi: 10.1002/adfm.201906415

    [40]

    Deng J, Yang Y, Tao J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237−9246. doi: 10.1021/acsnano.9b03738

    [41]

    Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156

    [42]

    杨睿,于千茜,潘一苇,等. 基于片上超表面的多路方向复用全息术[J]. 光电工程, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    Yang R, Yu Q Q, Pan Y W, et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220177. doi: 10.12086/oee.2022.220177

    [43]

    Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc Roy Soc A Math Phys Eng Sci, 1984, 392(1802): 45−57. doi: 10.1098/rspa.1984.0023

    [44]

    Pancharatnam S. Generalized theory of interference, and its applications[J]. Proc Indian Acad Sci Sec A, 1956, 44(5): 247−262. doi: 10.1007/BF03046050

    [45]

    Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PhysRevLett.126.183902

    [46]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Lett, 2016, 16(11): 7229−7234. doi: 10.1021/acs.nanolett.6b03626

    [47]

    Chong K E, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Lett, 2015, 15(8): 5369−5374. doi: 10.1021/acs.nanolett.5b01752

    [48]

    Papadopoulos A, Nguyen T, Durmus E, et al. IllusionPIN: shoulder-surfing resistant authentication using hybrid images[J]. IEEE Trans Inf Forensics Secur, 2017, 12(12): 2875−2889. doi: 10.1109/TIFS.2017.2725199

    [49]

    Mannos J, Sakrison D. The effects of a visual fidelity criterion of the encoding of images[J]. IEEE Trans Inf Theory, 1974, 20(4): 525−536. doi: 10.1109/TIT.1974.1055250

    [50]

    Dai Q, Guan Z Q, Chang S, et al. A single-celled tri-functional metasurface enabled with triple manipulations of light[J]. Adv Funct Mater, 2020, 30(50): 2003990. doi: 10.1002/adfm.202003990

  • 加载中

(9)

计量
  • 文章访问数:  2000
  • PDF下载数:  550
  • 施引文献:  0
出版历程
收稿日期:  2023-06-29
修回日期:  2023-08-28
录用日期:  2023-08-28
刊出日期:  2023-09-27

目录

/

返回文章
返回