偏振集成红外光电探测器研究进展与应用

周建,周易,倪歆玥,等. 偏振集成红外光电探测器研究进展与应用[J]. 光电工程,2023,50(5): 230010. doi: 10.12086/oee.2023.230010
引用本文: 周建,周易,倪歆玥,等. 偏振集成红外光电探测器研究进展与应用[J]. 光电工程,2023,50(5): 230010. doi: 10.12086/oee.2023.230010
Zhou J, Zhou Y, Ni X Y, et al. Research progress and applications of polarization integrated infrared photodetector[J]. Opto-Electron Eng, 2023, 50(5): 230010. doi: 10.12086/oee.2023.230010
Citation: Zhou J, Zhou Y, Ni X Y, et al. Research progress and applications of polarization integrated infrared photodetector[J]. Opto-Electron Eng, 2023, 50(5): 230010. doi: 10.12086/oee.2023.230010

偏振集成红外光电探测器研究进展与应用

  • 基金项目:
    国家自然科学基金资助项目(61904183,61974152,62004205,62104236,62104237,62222412);国家重点研发计划项目(2022YFB3606800);上海市启明星培育项目扬帆专项(21YF1455000,22YF1455800);上海市“基础研究特区计划”资助项目(JCYJ-SHFY-2022-004);中国科学院上海技术物理研究所创新专项基金资助项目(CX-399,CX-455)。
详细信息
    作者简介:
    *通讯作者: 周易,zhouyi@mail.sitp.ac.cn 陈建新,Jianxinchen@mail.sitp.ac.cn
  • 中图分类号: TN215

Research progress and applications of polarization integrated infrared photodetector

  • Fund Project: National Natural Science Foundation of China (61904183, 61974152, 62004205, 62104236, 62104237, 62222412), National Key Research and Development Program of China (2022YFB3606800), Shanghai Rising-Star Program Sailing Program (21YF1455000, 22YF1455800), Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences, Shanghai Branch (JCYJ-SHFY-2022-004) and Special Fund for Innovation of SITP, CAS (CX-399, CX-455)
More Information
  • 偏振集成探测器具有体积小、重量轻、结构紧凑,并且无需图像配准对动态目标同时同地同源探测与识别的优势。本文主要介绍了偏振集成光电探测器单元器件、线列焦平面、面阵焦平面的研究进展,分析了光栅结构设计与仿真、亚微米偏振光栅制备、集成与测试、偏振图像数据重构等获得高消光比偏振集成探测器的关键技术,最后介绍了偏振成像针对无人机、伪装卡车、地雷、海面舰船、面部识别、无人驾驶道路识别、海面漏油检测及医疗检测等方面的典型应用。

  • Overview: As one of the important platforms of the fourth generation new photoelectric imaging technology, the polarization integrated detector can simultaneously obtain multi-dimensional information such as the intensity and polarization of infrared radiation, and has the advantages of small size and high reliability. It is the development direction of the future infrared polarization imaging system. We first introduce the concept and research progress of the polarization integrated detectors, from the earliest regional polarization integrated detectors to pixel level polarization integrated detectors, and from the linear polarization integrated detectors to the focal planar array polarization integrated detectors. The second part mainly introduces the key technologies of the polarization integrated detector, mainly including the integrated structure design and the influence of related parameters on device performance, the method of the submicron polarization grating structure integration process, and the performance testing system. The third part mainly introduces the pseudo color image reconstruction method of the polarization integrated detector imaging and its application to typical targets in complex scenes. The last part introduces the new progress of the long-wave infrared polarization focal plane of Shanghai Institute of Technical Physics.

    Infrared polarization imaging shows great advantages based on the application requirements in some scenarios, but it also faces the huge challenge of reducing the signal-to-noise ratio and the spatial resolution caused by halving the received radiation energy. It needs to make continuous efforts to break through the existing technical bottlenecks in both hardware and software. In terms of the performance of polarization integrated devices, it is necessary to continue to improve the extinction ratio of the polarization integrated detector by cooperating with the metasurface structure to control the light field. In the aspect of image reconstruction and fusion, it is necessary to clarify the polarization characteristics of the target and background and the transmission characteristics of polarization through the polarization coding algorithm, and reflect its important value of significantly improving the signal-to-background ratio in the imaging detection of typical targets in relevant application scenarios.

  • 加载中
  • 图 1  偏振集成探测器成像基本概念及内涵

    Figure 1.  Basic concept and connotation of polarization integrated detector imaging

    图 2  (a)量子阱红外探测器示意图及偏振响应测试光谱[5];(b) Ⅱ类超晶格中红外结构示意图及偏振响应测试光谱[6];(c)集成等离子体微腔量子阱红外探测器光场分布图及SEM图[7];(d)集成非中心对称均匀椭圆阵列非制冷红外传感器结构示意图及SEM图[8];(e)集成非均匀光子晶体结构的InGaAsP量子阱光电探测器结构示意图及偏振选择增强光谱[9]

    Figure 2.  (a) Schematic diagram of the quantum well infrared detector and polarization response test spectrum [5]; (b) Schematic diagram of the mid infrared structure of type II superlattice and polarization response spectrum [6]; (c) Optical field distribution diagram and SEM diagram of the integrated plasma microcavity quantum well infrared detector[7]; (d) Structural diagram and SEM diagram of the integrated non centrosymmetric uniform elliptical array uncooled infrared sensor[8]; (e) Schematic diagram and polarization selective enhanced spectrum of the InGaAsP quantum well photodetectors with the integrated non-uniform photonic crystal structure [9]

    图 3  (a) 手性材料与半导体集成圆偏振光电探测器示意图[10];(b) 线偏振、圆偏振光相互转换超表面材料示意图[11];(c)单片集成表面超材料的中波红外偏振探测器的理论模型[12-14];(d)圆偏振结构对称性设计;(e) T型结构单元参数设计 ;(f)器件几何化设计包括环形、半环形以及L型等;(g)器件实现高选择性的光电响应[15-16]

    Figure 3.  (a) Schematic diagram of the circular polarization photodetector integrated with chiral materials and semiconductors [10]; (b) Schematic diagram of the linear polarization and circularly polarized light converting each other into super surface materials [11]; (c) Theoretical model of the MWIR polarization detector with monolithic integrated surface metamaterial [12-14]; (d) Symmetry design of the circular polarization structure; (e) Design of the T-shaped structural unit parameters; (f) The geometric design of the devices includes annular, semi annular, and L-shaped designs; (g) Devices achieve highly selective photoelectric response [15-16]

    图 4  (a) 1024×4集成亚波长金属光栅结构的近红外InGaAs 偏振探测器[17-19];(b) 512×4×3 超晶格长波红外偏振集成探测器

    Figure 4.  (a) 1024 × 4 near-infrared InGaAs polarization detectors integrated into the subwavelength metal grating structures [17-19]; (b) 512 × 4 × 3 superlattice long wave infrared polarization integrated detector

    图 5  (a) HgCdTe长波红外分焦平面偏振集成芯片实物图及结构示意图及偏振消光比测试[20];(b) 2 k×2 k 、像元中心距为20 μm的 InSb 中波红外偏振集成探测芯片及微区光场分布;(c)金属光栅直接集成的实时分焦平面CCD偏振成像传感器示意图及消光比测试;(d)量子阱甚长波偏振集成探测器结构示意图及消光比测试[30]

    Figure 5.  (a) Physical diagram and structural schematic diagram of the HgCdTe long wave infrared focal plane polarization integrated chip and the polarization extinction ratio test [20]; (b) 2 k × 2 k InSb medium wave infrared polarization integrated detection chip with a pixel center distance of 20 μm and micro area light field distribution; (c) Schematic diagram and extinction ratio test of the real-time focal plane CCD polarization imaging sensor directly integrated with the metal grating; (d) Structural diagram and extinction ratio test of the quantum well very long wave polarization integrated detector[30]

    图 6  分焦平面偏振传感器IMX250 MZR 的结构示意图[31]

    Figure 6.  Schematic diagram of the division of focal plane polarization sensor IMX250 MZR [31]

    图 7  偏振光栅设计示意图以及消光比与光栅结构参数(周期、线宽、高度)的关系

    Figure 7.  Schematic of the polarization grating design and the relationship between the extinction ratio and the grating structural parameters (period, linewidth, height)

    图 8  消光比(a)、光吸收(b)与入射角度的关系;(c)消光比与偏振片和光敏元距离的关系;(d)不同距离(5 μm、50 μm、200 μm)光场分布[39]

    Figure 8.  Relationship between the extinction ratio (a) the light absorption (b) and the incident angle; (c) Extinction ratio and distance between the polarizer and photosensitizer; (d) Different distances (5 μm, 50 μm, 200 μm) light field distribution[39]

    图 9  亚微米偏振光栅制备主要流程。(a)剥离法;(b)刻蚀法

    Figure 9.  The main process of preparing the submicron polarization gratings. (a) Lift-off method; (b) Etching method

    图 10  不同偏振角度光栅SEM图。(a) 0°、60°、120°偏振方向光栅;(b) 0°、45°、90°、135°偏振方向光栅;(c)镀制减反膜前后光栅透过率;(d)光栅偏振消光比[39]

    Figure 10.  SEM images of the gratings with different polarization angles. (a) 0°, 60°, 120° polarization direction grating; (b) 0°, 45°, 90°, 135˚ polarization direction grating; (c) Grating polarization light transmittance without and with antireflection film; (d) Polarization extinction ratio of the grating [39]

    图 11  (a)偏振集成探测器测试系统示意图[20];(b) 512×4×3制冷型InAs/GaSb超晶格长波红外偏振集成焦平面芯片及组件;(c)组件消光比测试[39]

    Figure 11.  (a) Schematic diagram of the polarization integrated detector testing system[20]; (b) 512 × 4 × 3 InAs/GaSb superlattice long wave infrared polarization integrated focal plane chips and module; (c) Polarization extinction ratio test results of module [39]

    图 12  (a)强度成像;(b)偏振度成像;(c)偏振角成像;(d)HSV伪彩色成像;(e)优化算法HSV伪彩色成像;(f)最优算法HSV伪彩色成像[46]

    Figure 12.  (a) Intensity imaging; (b) Degree of polarization imaging; (c) Angle of polarization imaging; (d) HSV pseudo color imaging; (e) Optimization algorithm HSV pseudo color imaging; (f) Optimal algorithm HSV pseudo color imaging[46]

    图 13  小型遥控无人机长波红外偏振成像与可见光、红外强度成像结果对比[57]

    Figure 13.  Comparison of the long wave infrared polarization imaging with the visible and infrared intensity imaging results for small remote control unmanned aerial vehicles [57]

    图 14  树荫下的两辆卡车红外偏振成像与红外强度成像结果对比[58]

    Figure 14.  Comparison of the infrared polarization imaging and the infrared intensity imaging results between two trucks under tree shade [58]

    图 15  地雷长波红外偏振成像与红外强度成像结果对比[59]

    Figure 15.  Comparison of the long wave infrared polarization imaging and infrared intensity imaging for landmines[59]

    图 16  水面舰船目标长波红外偏振成像与红外强度成像结果对比

    Figure 16.  Comparison of the long wave infrared polarization imaging and the infrared intensity imaging for the ship targets

    图 17  传统红外热成像和偏振成像面部识别对比

    Figure 17.  Comparison facial recognition of the traditional infrared thermal imaging and the polarization imaging

    图 18  偏振识别网络示意图。偏振导向分支和主分支与道路区域特征模块感知融合,并将其馈送到控制头部中枢进行智能决策

    Figure 18.  Schematic diagram of the polarization recognition network. Polarization oriented branches and main branches are perceived and fused with the road area feature module, and fed back to the control head center for intelligent decision-making

    图 19  传统红外热成像和偏振成像海面漏油检测对比[53]

    Figure 19.  Comparison of the traditional infrared thermal imaging and the polarization imaging for detecting oil spills on the sea surface[53]

    图 20  传统OCT成像与荧光偏振成像和偏振敏感光学相干断层扫描成像对比[63]

    Figure 20.  Comparison of the traditional OCT imaging with the fluorescence polarization imaging and the polarization sensitive optical coherence tomography imaging[63]

  • [1]

    Rust D M, Thompson K E. An integrated imaging detector of polarization and spectral content[J]. Remote Sens Rev, 1994, 8(1–3): 215−225. doi: 10.1080/02757259309532197

    [2]

    王霞, 苏子航, 赵家碧, 等. 基于交织序列的偏振方向映射方法[J]. 应用光学, 2021, 42(5): 877−883. doi: 10.5768/JAO202142.0503001

    Wang X, Su Z H, Zhao J B, et al. Sequence-interleaving mapping method for direction of polarization[J]. Journal of Applied Optics, 2021, 42(5): 877−883. doi: 10.5768/JAO202142.0503001

    [3]

    Andreou A G, Kalayjian Z K. Polarization imaging: principles and integrated polarimeters[J]. IEEE Sens J, 2002, 2(6): 566−576. doi: 10.1109/JSEN.2003.807946

    [4]

    Chen C J, Choi K K, Rokhinson L, et al. Corrugated quantum well infrared photodetectors for polarization detection[J]. Appl Phys Lett, 1999, 74(6): 862−864. doi: 10.1063/1.123391

    [5]

    Apalkov V, Ariyawansa G, Perera A G U, et al. Wasilewski. Polarization sensitivity of quantum well infrared photodetector coupled to a metallic diffraction grid[J]. IEEE J Quantum Electron, 2010, 46(6): 877−883. doi: 10.1109/JQE.2010.2040461

    [6]

    Kim J O, Yoon S, Kang B, et al. Linear polarization detection of Type II InAs/GaSb superlattice infrared photodetectors[C]//Asia Communications and Photonics Conference 2015, Hong Kong, China, 2015: ASu5A. 5. https://doi.org/10.1364/ACPC.2015.ASu5A.5.

    [7]

    Li Q, Li Z F, Li N, et al. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity[J]. Sci Rep, 2014, 4(1): 6332. doi: 10.1038/srep06332

    [8]

    Ogawa S, Masuda K, Takagawa Y, et al. Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber[J]. Opt Eng, 2014, 53(10): 107110. doi: 10.1117/1.OE.53.10.107110

    [9]

    Yang J K, Seo M K, Hwang I K, et al. Polarization-selective resonant photonic crystal photodetector[J]. Appl Phys Lett, 2008, 93(21): 211103. doi: 10.1063/1.3036954

    [10]

    Li W, Coppens Z J, Besteiro L V, et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Commun, 2015, 6(1): 8379. doi: 10.1038/ncomms9379

    [11]

    Li Z C, Liu W W, Cheng H, et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J]. Sci Rep, 2016, 5(1): 18106. doi: 10.1038/srep18106

    [12]

    Bai J, Wang C, Chen X H, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection[J]. Photonics Res, 2019, 7(9): 1051−1060. doi: 10.1364/PRJ.7.001051

    [13]

    Basiri A, Chen X H, Bai J, et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements[J]. Light Sci Appl, 2019, 8(1): 78. doi: 10.1038/s41377-019-0184-4

    [14]

    Bai J, Wang C, Chen X H, et al. Chip-integrated plasmonic flat optics for mid-infrared polarization detection[C]//Applications and Technology, CLEO_AT 2018, San Jose, 2018: JW2A. 19.

    [15]

    Wei J X, Xu C, Dong B W, et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nat Photonics, 2021, 15(8): 614−621. doi: 10.1038/s41566-021-00819-6

    [16]

    Wei J X, Chen Y, Li Y, et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nat Photonics, 2023, 17(2): 171−178. doi: 10.1038/s41566-022-01115-7

    [17]

    Wang R, Li T, Shao X M, et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Appl Mater Interfaces, 2015, 7(26): 14471−14476. doi: 10.1021/acsami.5b03679

    [18]

    Feng B, Chen Y F, Sun D, et al. Precision integration of grating-based polarizers onto focal plane arrays of near-infrared photovoltaic detectors for enhanced contrast polarimetric imaging[J]. Int J Extreme Manuf, 2021, 3(3): 035201. doi: 10.1088/2631-7990/abf5c8

    [19]

    Sun D, Li T, Yang B, et al. Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating[J]. Opt Express, 2019, 27(7): 9447−9458. doi: 10.1364/OE.27.009447

    [20]

    Hubbs J E, Gramer M M, Maestas-Jepson D, et al. Measurement of the radiometric and polarization characteristics of a microgrid polarizer infrared focal plane array[J]. Proc SPIE, 2006, 6295: 62950C. doi: 10.1117/12.685468

    [21]

    Cruz-Cabrera A A, Kemme S A, Wendt J R, et al. Edge termination effects on finite aperture polarizers for polarimetric imaging applications at mid-wave IR[J]. Proc SPIE, 2006, 6126: 61260K. doi: 10.1117/12.644310

    [22]

    Forrai D P, Endres D W, Devitt J W, et al. Development of a MWIR polarimetric FPA[J]. Proc SPIE, 2007, 6660: 666007. doi: 10.1117/12.737777

    [23]

    Malone N R, Hampp A, Gordon E E, et al. Detection comparisons between LWIR and MWIR polarimetric sensors[J]. Proc SPIE, 2008, 6972: 69720P. doi: 10.1117/12.779259

    [24]

    Gruev V, Perkins R, York T. CCD polarization imaging sensor with aluminum nanowire optical filters[J]. Opt Express, 2010, 18(18): 19087−19094. doi: 10.1364/OE.18.019087

    [25]

    POWELL S B, GRUEV V. Calibration methods for division-of-focal-plane polarimeters[J]. Opt Express, 2013, 21(18): 21039−21055. doi: 10.1364/OE.21.021039

    [26]

    Baker G, Wilson M, Coulter P. Development and results of NIR polarization camera[J]. Proc SPIE, 2007, 6567: 65671L. doi: 10.1117/12.720746

    [27]

    赵永强, 李宁, 张鹏, 等. 红外偏振感知与智能处理[J]. 红外与激光工程, 2018, 47(11): 1102001. doi: 10.3788/IRLA201847.1102001

    Zhao Y Q, Li N, Zhang P, et al. Infrared polarization perception and intelligent processing[J]. Infrared Laser Eng, 2018, 47(11): 1102001. doi: 10.3788/IRLA201847.1102001

    [28]

    Zhang J C, Luo H B, Liang R G, et al. Sparse representation-based demosaicing method for microgrid polarimeter imagery[J]. Opt Lett, 2018, 43(14): 3265−3268. doi: 10.1364/OL.43.003265

    [29]

    罗海波, 张俊超, 盖兴琴, 等. 偏振成像技术的发展现状与展望(特邀)[J]. 红外与激光工程, 2022, 51(1): 20210987. doi: 10.3788/IRLA20210987

    Luo H B, Zhang J C, Gai X Q, et al. Development status and prospects of polarization imaging technology (Invited)[J]. Infrared Laser Eng, 2022, 51(1): 20210987. doi: 10.3788/IRLA20210987

    [30]

    Zhou Y W, Li Z F, Zhou J, et al. High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors[J]. Sci Rep, 2018, 8(1): 15070. doi: 10.1038/s41598-018-33432-9

    [31]

    Rebhan D, Rosenberger M, Notni G. Principle investigations on polarization image sensors[J]. Proc SPIE, 2019, 11144: 111440A. doi: 10.1117/12.25335903

    [32]

    林国画, 张敏, 孟令伟, 等. 集成式偏振红外焦平面探测器的制备[J]. 激光与红外, 2019, 49(10): 1234−1238. doi: 10.3969/j.issn.1001-5078.2019.10.015

    Lin G H, Zhang M, Meng L W, et al. Polarizer fabricated onto infrared focal detector[J]. Laser Infrared, 2019, 49(10): 1234−1238. doi: 10.3969/j.issn.1001-5078.2019.10.015

    [33]

    Xue F D, Jin W Q, Qiu S, et al. Airborne optical polarization imaging for observation of submarine Kelvin wakes on the sea surface: imaging chain and simulation[J]. ISPRS J Photogramm Remote Sens, 2021, 178: 136−154. doi: 10.1016/j.isprsjprs.2021.06.001

    [34]

    褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报, 2016, 61(23): 2568−2577. doi: 10.1360/N972015-01163

    Chu J K, Zhang R, Wang Z W, et al. Progress on bio-inspired polarized skylight navigation sensor[J]. Chin Sci Bull, 2016, 61(23): 2568−2577. doi: 10.1360/N972015-01163

    [35]

    Li J S, Chu J K, Zhang R, et al. Bio-inspired attitude measurement method using a polarization skylight and a gravitational field[J]. Appl Opt, 2020, 59(9): 2955−2962. doi: 10.1364/AO.387770

    [36]

    Wan M J, Gu G H, Qian W X, et al. Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement[J]. Appl Opt, 2016, 55(21): 5513−5519. doi: 10.1364/AO.55.005513

    [37]

    Zhou X J, Gu G H, Ren K, et al. Single-incidence polarimetry for optical characteristics[J]. Optik, 2019, 188: 308−315. doi: 10.1016/j.ijleo.2019.05.038

    [38]

    Li J Y, Bao L, Jiang S, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging[J]. Opt Express, 2019, 27(6): 8375−8386. doi: 10.1364/OE.27.008375

    [39]

    Zhou J, Zhou Y, Shi Y, et al. A compact polarization-integrated long wavelength infrared focal plane array based on InAs/GaSb superlattice[J]. Sci China Inf Sci, 2022, 65(2): 122407. doi: 10.1007/s11432-021-3252-2

    [40]

    Zhou J, Zhou Y, Shi Y, et al. The light crosstalk suppression between adjacent pixels in polarization-integrated infrared detectors[J]. Proc SPIE, 2020, 11427: 1142738. doi: 10.1117/12.2552973

    [41]

    Zhou J, Zhou Y, Wang F F, et al. Design and analysis high extinction ratio monolithic polarization-integrated super pixel long wavelength infrared detectors[J]. Proc SPIE, 2021, 11763: 117638G. doi: 10.1117/12.2587591

    [42]

    Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2015, 2(8): 716−723. doi: 10.1364/OPTICA.2.000716

    [43]

    Ahmed A, Zhao X J, Gruev V, et al. Residual interpolation for division of focal plane polarization image sensors[J]. Opt Express, 2017, 25(9): 10651−10662. doi: 10.1364/OE.25.010651

    [44]

    Yang Z Y, Wang Z K, Wang Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nat Commun, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6

    [45]

    Rubin N A, D’Aversa G, Chevalier P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839

    [46]

    Tyo J S, Ratliff B M, Alenin A S. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization[J]. Opt Letters, 2016, 41(20): 4759−4762. doi: 10.1364/OL.41.004759

    [47]

    Li J X, Hung Y C, Kulce O, et al. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network[J]. Light Sci Appl, 2022, 11(1): 153.

    [48]

    Short N, Hu S W, Gurram P, et al. Improving cross-modal face recognition using polarimetric imaging[J]. Opt Lett, 2015, 40(6): 882−885. doi: 10.1364/OL.40.000882

    [49]

    Gurton K P, Yuffa A J, Videen G. LWIR polarimetry for enhanced facial recognition in thermal imagery[J]. Proc SPIE, 2014, 9099: 90990G. doi: 10.1117/12.2049700

    [50]

    Li N, Zhao Y Q, Pan Q, et al. Full-time monocular road detection using zero-distribution prior of angle of polarization[C]//European Conference on Computer Vision, Glasgow, 2020: 457–473. https://doi.org/10.1007/978-3-030-58595-2_28.

    [51]

    Li N, Zhao Y Q, Pan Q, et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J]. ISPRS J Photogramm Remote Sens, 2021, 180: 357−369. doi: 10.1016/j.isprsjprs.2021.08.022

    [52]

    Zhang B, Perrie W, Li X F, et al. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image[J]. Geophys Res Lett, 2011, 38(10): L10602. doi: 10.1029/2011GL047013

    [53]

    Nunziata F, Gambardella A, Migliaccio M. On the degree of polarization for SAR sea oil slick observation[J]. ISPRS J Photogramm Remote Sens, 2013, 78: 41−49. doi: 10.1016/j.isprsjprs.2012.12.007

    [54]

    Anderson R R. Polarized light examination and photography of the skin[J]. Arch Dermatol, 1991, 127(7): 1000−1005. doi: 10.1001/archderm.1991.01680060074007

    [55]

    Jacques S L, Ramella-Roman J C, Lee K. Imaging skin pathology with polarized light[J]. J Biomed Opt, 2002, 7(3): 329−340. doi: 10.1117/1.1484498

    [56]

    Salomatina-Motts E, Neel V A, Yaroslavskaya A N. Multimodal polarization system for imaging skin cancer[J]. Opt Spectrosc, 2009, 107(6): 884−890. doi: 10.1134/S0030400X0912008X

    [57]

    Ratliff B M, LeMaster D A, Mack R T, et al. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data[J]. Proc SPIE, 2011, 8160: 816002. doi: 10.1117/12.894669

    [58]

    Tyo J S, Goldstein D L, Chenault D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Appl Opt, 2006, 45(22): 5453−5469. doi: 10.1364/AO.45.005453

    [59]

    王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014, 43(10): 3175−3182. doi: 10.3969/j.issn.1007-2276.2014.10.001

    Wang X, Xia R Q, Jin W Q, et al. Technology progress of infrared polarization imaging detection[J]. Infrared Laser Eng, 2014, 43(10): 3175−3182. doi: 10.3969/j.issn.1007-2276.2014.10.001

    [60]

    Li N, Zhao Y Q, Wu R Y, et al. Polarization-guided road detection network for LWIR division-of-focal-plane camera[J]. Opt Lett, 2021, 46(22): 5679−5682. doi: 10.1364/OL.441817

    [61]

    Tong S W, Liu X G, Chen Q H, et al. Multi-feature based ocean oil spill detection for polarimetric sar data using random forest and the self-similarity parameter[J]. Remote Sens, 2019, 11(4): 451. doi: 10.3390/rs11040451

    [62]

    Song D M, Zhen Z J, Wang B, et al. A novel marine oil spillage identification scheme based on convolution neural network feature extraction from fully polarimetric SAR imagery[J]. IEEE Access, 2020, 8: 59801−59820. doi: 10.1109/ACCESS.2020.2979219

    [63]

    Patel R, Khan A, Quinlan R, et al. Polarization-sensitive multimodal imaging for detecting breast cancer[J]. Cancer Res, 2014, 74(17): 4685−4693. doi: 10.1158/0008-5472.CAN-13-2411

  • 加载中

(21)

计量
  • 文章访问数:  13523
  • PDF下载数:  2036
  • 施引文献:  0
出版历程
收稿日期:  2023-01-12
修回日期:  2023-05-11
录用日期:  2023-05-12
网络出版日期:  2023-06-02
刊出日期:  2023-06-09

目录

/

返回文章
返回