液体辅助激光加工硬脆材料及其应用

栾美玲,郑家鑫,孙相超,等. 液体辅助激光加工硬脆材料及其应用[J]. 光电工程,2023,50(3): 220328. doi: 10.12086/oee.2023.220328
引用本文: 栾美玲,郑家鑫,孙相超,等. 液体辅助激光加工硬脆材料及其应用[J]. 光电工程,2023,50(3): 220328. doi: 10.12086/oee.2023.220328
Luan M L, Zheng J X, Sun X C, et al. Liquid-assisted laser fabrication of hard materials and applications[J]. Opto-Electron Eng, 2023, 50(3): 220328. doi: 10.12086/oee.2023.220328
Citation: Luan M L, Zheng J X, Sun X C, et al. Liquid-assisted laser fabrication of hard materials and applications[J]. Opto-Electron Eng, 2023, 50(3): 220328. doi: 10.12086/oee.2023.220328

液体辅助激光加工硬脆材料及其应用

  • 基金项目:
    国家自然科学基金资助项目(62105117);吉林省教育厅科学技术研究项目(JJKH20221005KJ)
详细信息
    作者简介:
    *通讯作者: 刘学青,liuxueqing@jlu.edu.cn
  • 中图分类号: TN249

Liquid-assisted laser fabrication of hard materials and applications

  • Fund Project: the National Natural Science Foundation of China (62105117) and the Scientific Research Project of the Education Department of Jilin Province (JJKH20221005KJ)
More Information
  • 硬脆材料由于具有稳定的机械和化学性能、优良的光电特性等优势,在航空航天、光电工业等领域具有广泛的应用。激光加工由于具有高精度、高能量、非接触式加工等特点,是实现硬脆材料加工的理想技术。为了实现硬脆材料的去除加工,通常需要较高的激光能量,使得加工的结构精度较低,而且表面质量较差。本综述介绍了液体辅助激光加工技术在硬脆材料加工方面的研究进展,分别介绍了液相激光烧蚀、激光诱导背部湿法刻蚀和刻蚀辅助激光改性等三种液体辅助激光加工技术的原理,对比了各自的优势和不足,以及不同加工技术、辅助液体种类以及加工参数等对不同硬脆材料加工质量的影响,介绍了液体辅助激光加工技术目前主要的应用,最后,简要阐述了该技术存在的问题和未来的潜在发展。

  • 加载中
  • 图 1  液体辅助激光加工技术框架简图

    Figure 1.  Outline of the review about liquid-assisted laser fabrication

    图 2  (a) 液相激光加工原理图; (b) 基于液相激光烧蚀产生的空化气泡的产生、膨胀、坍塌以及持久性气泡产生[11];(c) 基于水下持续气泡辅助飞秒激光烧蚀技术制备尾部同心圆宏观结构[18];(d) 基于飞秒激光冲击喷丸液体烧蚀技术制备孔状裂纹结构的不同角度形貌展示[19]

    Figure 2.  (a) Schematic diagram of liquid phase laser processing; (b) Generation, expansion, collapse, and persistent bubble generation based on cavitation bubbles generated by liquid phase laser ablation [11]; (c) Preparation of tail concentric circle macrostructure based on underwater sustained bubble-assisted femtosecond laser ablation technology[18]; (d) Preparation of porous crack structure based on femtosecond laser impact shot peening liquid ablation technology with different angles and morphology display[19]

    图 3  (a) 基于飞秒激光的激光诱导背部湿法刻蚀光路系统示意图[24];(b) 利用激光诱导背部湿法刻蚀技术在不同环境下制备的孔的形貌对比[25];(c) 激光诱导背部湿法刻蚀产生空化气泡的流体动力学的阴影图[26]

    Figure 3.  (a) Schematic diagram of laser induced back wet etching optical path system based on femtosecond laser[24] ; (b) Comparison of the morphologies of the holes prepared by laser-induced wet back etching under different environments[25]; (c) Shadow diagram of the hydrodynamics of cavitation bubbles produced by laser-induced wet back etching[26]

    图 4  (a) 利用辅助液体与材料本体和改性区域反应速率不同进行选择性刻蚀的流程图[34];(b) 利用辅助液体只与改性区域反应而进行选择性刻蚀的流程图[35]

    Figure 4.  (a) Flow chart of selective etching using the reaction rates of the auxiliary liquid and the material body and modified area[34]; (b) Flow chart for selective etching using an auxiliary liquid reacting only with the modified region[35]

    图 5  (a) 在硅表面生成了三种不同的微纳米结构[55]; (b) 在光敏玻璃内波制备出微通道结构[88];(c) 在蓝宝石表面通过各向异性刻蚀制备的三角形凹坑结构[89]

    Figure 5.  (a) Three different micro-nano structures are generated on the silicon surface[55]; (b) Microchannel structures are prepared by internal waves in photosensitive glass[88]; (c) Triangular pits prepared by anisotropic etching on the sapphire surface[89]

    图 6  (a) 在蓝宝石表面制备单个任意形貌微透镜[90];(b) 金刚石表面制备不同形貌的微光涡旋发生器[91];(c) 在镀膜蓝宝石表面制备均匀排布的仿生蛾眼增透结构[92];(d) 在硫化物表面制备的高均匀性的人工复眼结构[35]

    Figure 6.  (a) A single microlens with arbitrary morphology was prepared on the sapphire surface[90]; (b) Preparation of low-light level vortex generators with different morphologies on the diamond surface[91]; (c) The bionic moth-eye anti-reflection structure was prepared uniformly on the surface of the coated sapphire[92]; (d) Highly homogenous artificial compound eye structures prepared on the surface of sulfide[35]

    图 7  (a) 三层多分支的微流控系统[94];(b) 叶轮可旋转的辅助微通道系统[94];(c) 能够控制液体流动方向的微腔和微球嵌套系统结构[95]

    Figure 7.  (a) Three-layer multi-branch microfluidic system[94]; (b) Auxiliary microchannel system with rotating impeller[94]; (c) A nested system structure of microcavities and microspheres that can control the direction of liquid flow[95]

    图 8  (a) 激光诱导微射流辅助消融方法制备的通孔阵列[19];(b) 不同形貌的无锥度微孔[98];(c) 激光诱导微射流辅助消融方法制备的微通道阵列[19]

    Figure 8.  (a) Through hole array prepared by laser-induced micro-jet assisted ablation[19]; (b) Non-taper pores with different morphologies[98]; (c) Microchannel array prepared by laser-induced microjet assisted ablation[19]

    表 1  三种技术优缺点比较

    Table 1.  Comparison of advantages and disadvantages of three technologies

    液体激光烧蚀激光诱导背面湿法刻蚀湿法腐蚀辅助激光改性
    优点 1、阻隔加工过程中空气对材料的影响,尤其是避免对金属的氧化;
    2、液体起到冷却作用,减少热影响区;
    3、液体的流动有效减少碎屑堆积,减少沉积层和重铸层的产生,提高表面质量。
    1、易于去除产生的碎屑,加工过程不受碎屑影响;
    2、流体同样起着冷却的作用,可以提高加工质量;
    3、加工质量和精度较高,损伤较小。
    1、容易进行三维加工;
    2、加工能量低,易提高加工精度;
    3、分布进行,加工过程不受液体的影响。
    不足 1、激光穿过辅助液体,增加了激光能量损耗,包括液体中的光吸收和散射等;
    2、加工过程中液体的扰动对聚焦光束产生影响,导致光束质量下降,结构表面质量较差。
    1、吸收液一般是丙酮、甲苯、芘等有毒物质,具有环境和安全问题;
    2、难以制备复杂的三维结构。
    1、对于各向同性腐蚀,难以制备棱角分明的结构;
    2、难以对化学稳定性良好或耐腐蚀材料进行刻蚀。
    下载: 导出CSV

    表 2  不同材料不同辅助液体加工

    Table 2.  Different materials assist in liquid processing

    材料辅助液体加工方法激光器类型
    (波长/nm,脉冲宽度)
    制备结构时间引用
    光敏玻璃 10%HF 退火+湿法腐蚀 fs激光器(775,150 fs) 三维垂直微流控结构 2004 [44]
    光敏玻璃 10%HF 湿法腐蚀 fs激光器(515,260 fs) 微透镜 2022 [45]
    光敏玻璃 10%HF 湿法腐蚀 fs激光器 芯片内三维结构 2011 [46]
    光敏玻璃 化学电镀液 FS激光直接烧蚀+化学电镀 fs激光器(1045,457 fs) 微电器件 2013 [47]
    光敏玻璃和SU-8 10%HF 湿法腐蚀+双光子聚合 fs激光器(1045,360 fs) 三维微流控结构 2014 [48]
    二氧化硅 10%HF 湿法腐蚀 罗氏线圈电流换能器 2016 [49]
    二氧化硅 高锰酸钾 背部湿法刻蚀 fs激光器(515,500 fs) LIPSS 2018 [50]
    二氧化硅 磷酸/硫酸铜 背部湿法刻蚀 掺镱光纤激光器(1064,100 ns) 高纵深比通道 2020 [51]
    二氧化硅 HF 湿法腐蚀 fs激光器(800,50 fs) 三维螺线管微线圈 2014 [41]
    5%HF 两步湿法腐蚀 fs激光器(800,35 fs) 深纳米光栅 2022 [52]
    KOH(20wt%): 异丙醇=4:1 湿法腐蚀 fs激光器(800,35 fs) 纳米间隙结构 2021 [53]
    5%HF 湿法腐蚀+聚合物转写 fs激光器(800,30 fs) 微透镜阵列模板 2012 [54]
    氢氧化钾(20%):异丙醇(IPA,4%)=4:1 湿法腐蚀 fs激光器(800,35 fs) 大面积微纳米结构 2017 [55]
    40%KOH 背部湿法刻蚀 fs激光器(1552.5,900 fs) 深凹槽 2022 [33]
    40%KOH 背部湿法刻蚀 fs激光器(1552.5,900 fs) LIPSS 2020 [56]
    液体辅助激光加工 fs激光器(790,30 fs) LIPSS 2014 [12]
    -- -- 液体辅助激光加工 -- LIPSS [57-60]
    UPB-fs-LAL fs激光器(1030,223 fs) 尾部同心圆结构 2020 [21]
    fs-LSPAL fs激光器(1030,223 fs) 裂纹结构 2020 [22]
    水,乙醇 背部湿法刻蚀 fs激光器(800,120 fs) 2019 [25]
    饱和芘/丙酮 背部湿法刻蚀 KrF准分子激光器(248,20 ns) 倾斜微沟槽 2010 [61]
    水/乙醇 液体辅助激光加工 Yb: KGW飞秒激光器(515,217 fs) 切割硅晶片 2022 [11]
    20%HF 湿法腐蚀 fs激光器(800,50 fs) 孔阵列 2015 [39]
    熔融石英 10%HF 湿法腐蚀 fs激光器 谐振器 2022 [62]
    熔融石英 10 mol/L的KOH 湿法腐蚀 fs激光器 微轴棱锥 2022 [63]
    熔融石英 5%HF 湿法腐蚀 fs激光器(800,120 fs) 大面积微透镜阵列 2018 [64]
    熔融石英 5%HF 湿法腐蚀 fs激光器(1030,230 fs) 凹槽 2019 [65]
    熔融石英 KOH 湿法腐蚀 fs激光器 芯片内三维结构 2011 [46]
    熔融石英 0.5 mol的芘/甲苯和甲苯 背部湿法刻蚀 ps激光器(355,10 ps)
    ps激光器(266,10 ps)
    LIPSS 2010 [66]
    熔融石英 0.5 mol芘/甲苯 ns背部刻蚀+fs烧蚀 fs激光器(248,500 ps)
    Ti:蓝宝石激光器(775,130 fs)
    LIPSS 2006 [67]
    熔融石英 丙酮/芘 背部湿法刻蚀 XeCl准分子激光器(308,30 ns) 微透镜阵列 2004 [26]
    蓝宝石 H3PO4: H2SO4=1:3 湿法腐蚀+掩膜 压力传感器 2021 [68]
    蓝宝石 H3PO4: H2SO4=1:3 湿法腐蚀 fs激光器(1028,190 fs) 微透镜阵列 2018 [38]
    蓝宝石 H3PO4: H2SO4=1:3 湿法腐蚀 fs激光器(800,120 fs) SWS减反结构 2017 [69]
    蓝宝石 5%HF 湿法腐蚀 fs激光器 无锥度通孔 2022 [61]
    蓝宝石 40%KOH 湿法腐蚀 fs激光器(800,120 fs) 大面积微透镜阵列 2018 [64]
    蓝宝石 氯苯 背部湿法刻蚀 ps激光器(266,150 ps) 光栅 2007 [70]
    蓝宝石 甲苯 背部湿法刻蚀 ps激光器(355,10 ps) 凹槽 2010 [71]
    蓝宝石 硫酸铜 背部湿法刻蚀 Nd:YAG激光器(1064,120 ns) 凹槽 2017 [31]
    4H-SiC 正丁醇溶液 背部湿法刻蚀-微射流 fs激光器(520,300 fs) 孔和凹槽 2022 [19]
    硒化锌ZnSe H2O2(26%): NH4OH(28%)=1:3 湿法腐蚀 fs激光器(800,130 fs) 脊形波导 2022 [72]
    硼硅酸盐玻璃 8.5 mol/L的KOH 湿法腐蚀 三维自由形状 2021 [73]
    氟化物 甲苯 背部湿法刻蚀 ps激光器(355,10 ps) 凹槽 2010 [71]
    钠钙玻璃 硫酸铜 背部湿法刻蚀+液相沉积 掺镱光纤激光器(1064,100 ps) 微铜图案 2020 [74]
    锗晶片 水/乙醇 液体辅助激光加工 Nd: YAG激光器(1064,10 ps) 切割锗晶片 2016 [75]
    K9玻璃 8%HF 湿法腐蚀+转写硫族玻璃 fs激光器(800,50 fs) 复眼 2022 [35]
    下载: 导出CSV
  • [1]

    Gao B, Chen T, Khuat V, et al. Fabrication of grating structures on silicon carbide by femtosecond laser irradiation and wet etching[J]. Chin Opt Lett, 2016, 14(2): 021407. doi: 10.3788/COL201614.021407

    [2]

    Bharadwaj V, Wang Y C, Fernandez T T, et al. Femtosecond laser written diamond waveguides: a step towards integrated photonics in the far infrared[J]. Opt Mater, 2018, 85: 183−185. doi: 10.1016/j.optmat.2018.08.062

    [3]

    Cao J J, Hou Z S, Tian Z N, et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Appl Mater Interfaces, 2020, 12(9): 10107−10117. doi: 10.1021/acsami.9b21008

    [4]

    Feng S C, Zhang R, Huang C Z, et al. An investigation of recast behavior in laser ablation of 4H-silicon carbide wafer[J]. Mater Sci Semicond Process, 2020, 105: 104701. doi: 10.1016/j.mssp.2019.104701

    [5]

    Saini S K, Dubey A K. Study of material characteristics in laser trepan drilling of ZTA[J]. J Manuf Process, 2019, 44: 349−358. doi: 10.1016/j.jmapro.2019.06.017

    [6]

    Chang H F, Yeung W K, Kao W C, et al. Surface micromachining on a polymethylmethacrylate substrate using visible laser-induced backside wet etching with a KMnO4 solution as an absorber[J]. J Laser Appl, 2020, 32(2): 022014. doi: 10.2351/1.5114659

    [7]

    Feng W H, Guo J, Yan W J, et al. Deep channel fabrication on copper by multi-scan underwater laser machining[J]. Opt Laser Technol, 2019, 111: 653−663. doi: 10.1016/j.optlastec.2018.10.046

    [8]

    Kim K, Song M K, Lee S J, et al. Fundamental study on underwater cutting of 50 mm-thick stainless steel plates using a fiber laser for nuclear decommissioning[J]. Appl Sci, 2022, 12(1): 495. doi: 10.3390/app12010495

    [9]

    Frias Batista L M, Nag A, Meader V K, et al. Generation of nanomaterials by reactive laser-synthesis in liquid[J]. Sci China Phys Mech Astron, 2022, 65(7): 274202. doi: 10.1007/s11433-021-1835-x

    [10]

    Wang J, Niino H, Yabe A. One-step microfabrication of fused silica by laser ablation of an organic solution[J]. Appl Phys A, 1999, 68(1): 111−113. doi: 10.1007/s003390050863

    [11]

    Tian W T, Wang Z W, Wang C J, et al. Effects of bubble behaviors in femtosecond laser machining of silicon wafer in liquids[J]. J Manuf Process, 2022, 83: 502−511. doi: 10.1016/j.jmapro.2022.09.024

    [12]

    Derrien T J Y, Koter R, Krüger J, et al. Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water[J]. J Appl Phys, 2014, 116(7): 074902. doi: 10.1063/1.4887808

    [13]

    Long J Y, Eliceiri M, Vangelatos Z, et al. Early dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J]. Opt Express, 2020, 28(10): 14300−14309. doi: 10.1364/OE.391584

    [14]

    Kalus M R, Bärsch N, Streubel R, et al. How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids - quantification of their volume, dwell dynamics, and gas composition[J]. Phys Chem Chem Phys, 2017, 19(10): 7112−7123. doi: 10.1039/C6CP07011F

    [15]

    Zhang D S, Li Z G, Sugioka K. Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids[J]. J Phys Photonics, 2021, 3(4): 042002. doi: 10.1088/2515-7647/AC0BFD

    [16]

    Zhang D S, Li Z G, Liang C H. Diverse nanomaterials synthesized by laser ablation of pure metals in liquids[J]. Sci China Phys Mech Astron, 2022, 65(7): 274203. doi: 10.1007/s11433-021-1860-x

    [17]

    Chen L W, Hong M H. Functional nonlinear optical nanoparticles synthesized by laser ablation[J]. Opto-Electron Sci, 2022, 1(5): 210007. doi: 10.29026/oes.2022.210007

    [18]

    Hoppius J S, Maragkaki S, Kanitz A, et al. Optimization of femtosecond laser processing in liquids[J]. Appl Surf Sci, 2019, 467–468: 255−260. doi: 10.1016/j.apsusc.2018.10.121

    [19]

    Guo Y, Qiu P, Xu S L, et al. Laser-induced microjet-assisted ablation for high-quality microfabrication[J]. Int J Extrem Manuf, 2022, 4(3): 035101. doi: 10.1088/2631-7990/ac6632

    [20]

    Ren N F, Xia K B, Yang H Y, et al. Water-assisted femtosecond laser drilling of alumina ceramics[J]. Ceram Int, 2021, 47(8): 11465−11473. doi: 10.1016/j.ceramint.2020.12.274

    [21]

    Zhang D S, Ranjan B, Tanaka T, et al. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring[J]. Int J Extrem Manuf, 2020, 2(1): 015001. doi: 10.1088/2631-7990/ab729f

    [22]

    Zhang D S, Wu L C, Ueki M, et al. Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application[J]. Int J Extrem Manuf, 2020, 2(4): 045001. doi: 10.1088/2631-7990/abb5f3

    [23]

    Wang J, Niino H, Yabe A. Micromachining of transparent materials with super-heated liquid generated by multiphotonic absorption of organic molecule[J]. Appl Surf Sci, 2000, 154–155: 571−576. doi: 10.1016/S0169-4332(99)00462-6

    [24]

    Cao X W, Chen Q D, Fan H, et al. Liquid-assisted femtosecond laser precision-machining of silica[J]. Nanomaterials (Basel), 2018, 8(5): 287. doi: 10.3390/nano8050287

    [25]

    Sun X Y, Yu J L, Hu Y W, et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Appl Opt, 2019, 58(33): 9027−9032. doi: 10.1364/AO.58.009027

    [26]

    Kopitkovas G, Lippert T, David C, et al. Fabrication of beam homogenizers in quartz by laser micromachining[J]. J Photochem Photobiol A: Chem, 2004, 166(1–3): 135–140.https://doi.org/10.1016/j.jphotochem.2004.05.001.

    [27]

    Zhigalina O M, Khmelenin D N, Atanova A V, et al. A nanoscale modification of materials at thermoplasmonic laser-induced backside wet etching of sapphire[J]. Plasmonics, 2020, 15(3): 599−608. doi: 10.1007/s11468-019-01091-9

    [28]

    Long J Y, Zhou C X, Cao Z Q, et al. Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers[J]. Opt Laser Technol, 2019, 109: 61−70. doi: 10.1016/j.optlastec.2018.07.066

    [29]

    Olenin A Y, Lisichkin G V. Metal nanoparticles in condensed media: preparation and the bulk and surface structural dynamics[J]. Russ Chem Rev, 2011, 80(7): 605−630. doi: 10.1070/RC2011v080n07ABEH004201

    [30]

    Ding X M, Sato T, Kawaguchi Y, et al. Laser-induced backside wet etching of sapphire[J]. Jpn J Appl Phys, 2003, 42(2B): L176−L178. doi: 10.1143/JJAP.42.L176

    [31]

    Xie X Z, Huang X D, Jiang W, et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions[J]. Opt Laser Technol, 2017, 89: 59−68. doi: 10.1016/j.optlastec.2016.09.031

    [32]

    Yan T Y, Ji L F, Hong M H. Backside wet etching of sapphire substrate by laser-induced carbothermal reduction[J]. Opt Laser Technol, 2022, 149: 107900. doi: 10.1016/J.OPTLASTEC.2022.107900

    [33]

    Luong K P, Tanabe-Yamagishi R, Yamada N, et al. Laser-assisted wet etching of silicon back surfaces using 1552 nm femtosecond laser[J]. Int J Electr Mach, 2020, 25: 7. doi: 10.2526/ijem.25.7

    [34]

    Deng C, Ki H. Tunable wetting surfaces with interacting cavities via femtosecond laser patterning and wet etching[J]. J Appl Phys, 2020, 128(1): 015306. doi: 10.1063/5.0011885

    [35]

    Wang S K, Zhang F, Yang Q, et al. Chalcogenide glass IR artificial compound eyes based on femtosecond laser microfabrication[J]. Adv Mater Technol, 2022, 8(2): 2200741. doi: 10.1002/admt.202200741

    [36]

    Kim Y S, Kim J, Choe J S, et al. Semiconductor microlenses fabricated by one-step wet etching[J]. IEEE Photonics Technol Lett, 2000, 12(5): 507−509. doi: 10.1109/68.841268

    [37]

    Atuchin V V, Soldatenkov I S, Kirpichnikov A V, et al. Multilevel kinoform microlens arrays in fused silica for high-power laser optics[J]. Proc SPIE, 2004, 5481: 43−46. doi: 10.1117/12.558295

    [38]

    Cao X W, Lu Y M, Fan H, et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array[J]. Appl Opt, 2018, 57(32): 9604−9608. doi: 10.1364/AO.57.009604

    [39]

    Gao B, Chen T, Chen Y, et al. Fabrication of through micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching[J]. Chin Phys Lett, 2015, 32(10): 107901. doi: 10.1088/0256-307X/32/10/107901

    [40]

    Khuat V, Ma Y C, Si J H, et al. Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching[J]. Appl Surf Sci, 2014, 289: 529−532. doi: 10.1016/j.apsusc.2013.11.030

    [41]

    Meng X W, Yang Q, Chen F, et al. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics[J]. Proc SPIE, 2015, 9449: 94493N. doi: 10.1117/12.2075880

    [42]

    Wang C W, Yang L, Zhang C C, et al. Multilayered skyscraper microchips fabricated by hybrid "all-in-one" femtosecond laser processing[J]. Microsyst Nanoeng, 2019, 5: 17. doi: 10.1038/s41378-019-0056-3

    [43]

    Cho C S, Kong D, Kim B. Wet/dry etching combined microtextured structures for high-efficiency solar cells[J]. Micro Nano Lett, 2015, 10(10): 528−532. doi: 10.1049/mnl.2015.0182

    [44]

    Sugioka K, Masuda M, Hongo T, et al. Three-dimensional microfluidic structure embedded in photostructurable glass by femtosecond laser for lab-on-chip applications[J]. Appl Phys A, 2004, 79(4–6): 815−817. doi: 10.1007/s00339-004-2569-2

    [45]

    Wang B X, Qi J Y, Lu Y M, et al. Rapid fabrication of smooth micro-optical components on glass by etching-assisted femtosecond laser modification[J]. Materials (Basel), 2022, 15(2): 678. doi: 10.3390/MA15020678

    [46]

    Sugioka K, Cheng Y. Integrated microchips for biological analysis fabricated by femtosecond laser direct writing[J]. MRS Bull, 2011, 36(12): 1020−1027. doi: 10.1557/mrs.2011.274

    [47]

    Xu J, Wu D, Hanada Y, et al. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing[J]. Lab Chip, 2013, 13(23): 4608−4616. doi: 10.1039/c3lc50962a

    [48]

    Wu D, Wu S Z, Xu J, et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip[J]. Laser Photon Rev, 2014, 8(3): 458−467. doi: 10.1002/lpor.201400005

    [49]

    Bian H, Shan C, Liu K Y, et al. A miniaturized Rogowski current transducer with wide bandwidth and fast response[J]. J Micromech Microeng, 2016, 26(11): 115015. doi: 10.1088/0960-1317/26/11/115015

    [50]

    Ehrhardt M, Lorenz P, Han B, et al. Laser-induced backside wet etching of SiO2 with a visible ultrashort laser pulse by using KMnO4 solution as an absorber liquid[J]. J Laser Micro/Nanoeng, 2018, 13(2): 47−54. doi: 10.2961/jlmn.2018.02.0001

    [51]

    Kwon K K, Kim H, Kim T, et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching[J]. J Mater Process Technol, 2020, 278: 116505. doi: 10.1016/j.jmatprotec.2019.116505

    [52]

    Li X Y, Li R Y, Yu Z, et al. Deepening of nanograting structures on Si by a two-step laser spatial-selective amorphization strategy combined with chemical etching[J]. Appl Surf Sci, 2022, 589: 152965. doi: 10.1016/J.APSUSC.2022.152965

    [53]

    Zhou S P, Li X W, Huang J, et al. Fabrication of nanogap structures through spatially shaped femtosecond laser modification with the assistance of wet chemical etching[J]. Opt Lett, 2021, 46(15): 3560−3563. doi: 10.1364/OL.431385

    [54]

    Hao B, Liu H W. , Chen F, et al. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces[J]. Opt Express, 2012, 20(12): 12939−12948. doi: 10.1364/OE.20.012939

    [55]

    Li X W, Xie Q, Jiang L, et al. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation[J]. Appl Phys Lett, 2017, 110(18): 181907. doi: 10.1063/1.4982790

    [56]

    Ito Y, Chiah S Y, Luong K P, et al. Formation of fine periodic structures on back surface of Si substrate by a femtosecond laser at 1552 nm[J]. J Laser Micro/Nanoeng, 2020, 15(2): 111−117. doi: 10.2961/jlmn.2020.02.2006

    [57]

    Zhang D S, Li X Z, Fu Y, et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS[J]. Opto-Electron Adv, 2022, 5(2): 210066. doi: 10.29026/oea.2022.210066

    [58]

    Zhang D S, Ranjan B, Tanaka T, et al. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces[J]. ACS Appl Nano Mater, 2020, 3(2): 1855−1871. doi: 10.1021/acsanm.9b02520

    [59]

    Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids[J]. Opto-Electron Adv, 2019, 2(3): 190002. doi: 10.29026/oea.2019.190002

    [60]

    Ali N, Bashir S, Umm-I-Kalsoom, et al. Effect of liquid environment on the titanium surface modification by laser ablation[J]. Appl Surf Sci, 2017, 405: 298−307. doi: 10.1016/j.apsusc.2017.02.047

    [61]

    Sato T, Kurosaki R, Kawaguchi Y, et al. Fabrication of multiple slanted microstructures on silica glass by laser-induced backside wet etching[J]. J Laser Micro/Nanoeng, 2010, 5(3): 256−262. doi: 10.2961/jlmn.2010.03.0014

    [62]

    Zhao T, Zhuo M, Zhou X, et al. Fused silica gyroscope resonator manufactured with femtosecond laser assisted wet etching[J]. J Microelectromech Syst, 2022, 31(3): 315−317. doi: 10.1109/JMEMS.2022.3154890

    [63]

    Skora J L, Gaiffe O, Bargiel S, et al. High-fidelity glass micro-axicons fabricated by laser-assisted wet etching[J]. Opt Express, 2022, 30(3): 3749−3759. doi: 10.1364/OE.446740

    [64]

    Zhang F, Wang C, Yin K, et al. Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching[J]. Sci Rep, 2018, 8(1): 2419. doi: 10.1038/s41598-018-20807-1

    [65]

    Sun X Y, Zheng J F, Liang C, et al. Improvement of rear damage of thin fused silica by liquid-assisted femtosecond laser cutting[J]. Appl Phys A, 2019, 125(7): 461. doi: 10.1007/s00339-019-2754-y

    [66]

    Ehrhardt M, Raciukaitis G, Gecys P, et al. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses[J]. Appl Surf Sci, 2010, 256(23): 7222−7227. doi: 10.1016/j.apsusc.2010.05.055

    [67]

    Böhme R, Pissadakis S, Ehrhardt M, et al. Ultra-short laser processing of transparent material at the interface to liquid[J]. J Phys D Appl Phys, 2006, 39(7): 1398−1404. doi: 10.1088/0022-3727/39/7/010

    [68]

    Shao Z Q, Wu Y L, Wang S, et al. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching[J]. Opt Express, 2021, 29(3): 4139−4146. doi: 10.1364/OE.417246

    [69]

    Li Q K, Cao J J, Yu Y H, et al. Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing[J]. Opt Lett, 2017, 42(3): 543−546. doi: 10.1364/OL.42.000543

    [70]

    Pissadakis S, Böhme R, Zimmer K. Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique[J]. Opt Express, 2007, 15(4): 1428−1433. doi: 10.1364/OE.15.001428

    [71]

    Ehrhardt M, Raciukaitis G, Gecys P, et al. Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses[J]. Appl Phys A, 2010, 101(2): 399−404. doi: 10.1007/s00339-010-5833-7

    [72]

    Zhou S K, Shen L, Wang F J, et al. High-aspect-ratio ZnSe microstructure generated by spatially shaped femtosecond laser writing assisted with wet chemical etching[J]. Opt Laser Technol, 2022, 147: 107687. doi: 10.1016/j.optlastec.2021.107687

    [73]

    Bischof D, Kahl M, Michler M. Laser-assisted etching of borosilicate glass in potassium hydroxide[J]. Opt Mater Express, 2021, 11(4): 1185−1195. doi: 10.1364/OME.417871

    [74]

    Seo J M, Kwon K K, Song K Y, et al. Deposition of durable micro copper patterns into glass by combining laser-induced backside wet etching and laser-induced chemical liquid phase deposition methods[J]. Materials (Basel), 2020, 13(13): 2977. doi: 10.3390/ma13132977

    [75]

    Zhang D S, Gökce B, Sommer S, et al. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol[J]. Appl Surf Sci, 2016, 367: 222−230. doi: 10.1016/j.apsusc.2016.01.071

    [76]

    Miyata Y, Nakamukai Y, Azevedo C T, et al. Photoetching method that provides improved silicon-on-insulator layer thickness uniformity in a defined area[J]. Microelectron Eng, 2017, 180: 93−95. doi: 10.1016/j.mee.2017.06.008

    [77]

    Duan M M, Wu J J, Zhang Y B, et al. Ultra-low-reflective, self-cleaning surface by fabrication dual-scale hierarchical optical structures on silicon[J]. Coatings, 2021, 11(12): 1541. doi: 10.3390/coatings11121541

    [78]

    Kawaguchi Y, Sato T, Narazaki A, et al. Rapid prototyping of silica glass microstructures by the LIBWE method: fabrication of deep microtrenches[J]. J Photochem Photobiol A:Chem, 2006, 182(3): 319−324. doi: 10.1016/j.jphotochem.2006.05.033

    [79]

    Koker L, Kolasinski K W. Photoelectrochemical etching of Si and porous Si in aqueous HF[J]. Phys Chem Chem Phys, 2000, 2(2): 277−281. doi: 10.1039/a908383i

    [80]

    Gabouze N, Belhousse S, Outemzabet R. Chemical etching of mono and poly-crystalline silicon in HF/K2Cr2O7/H2O solutions[J]. Acta Phys Slovaca, 2003, 53(3): 207−214.

    [81]

    Romano L, Vila-Comamala J, Jefimovs K, et al. High-aspect-ratio grating microfabrication by platinum-assisted chemical etching and gold electroplating[J]. Adv Eng Mater, 2020, 22(10): 2000258. doi: 10.1002/adem.202000258

    [82]

    Immanuel P N, Chiang C C, Lee T H, et al. Utilization of low wavelength laser linking with electrochemical etching to produce nano-scale porous layer on p-type silicon wafer with high luminous flux[J]. ECS J Solid State Sci Technol, 2021, 10(1): 016003. doi: 10.1149/2162-8777/abdc4b

    [83]

    Chen L, Cao K Q, Li Y L, et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens[J]. Opto-Electron Adv, 2021, 4(12): 200036. doi: 10.29026/oea.2021.200036

    [84]

    Chen F, Liu H W, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt Express, 2010, 18(19): 20334−20343. doi: 10.1364/OE.18.020334

    [85]

    Kim J, Kim S I, Joung Y H, et al. Two-step hybrid process of movable part inside glass substrate using ultrafast laser[J]. Micro Nano Syst Lett, 2021, 9(1): 16. doi: 10.1186/S40486-021-00142-3

    [86]

    Paiè P, Bragheri F, Di Carlo D, et al. Particle focusing by 3D inertial microfluidics[J]. Microsyst Nanoeng, 2017, 3: 17027. doi: 10.1038/micronano.2017.27

    [87]

    He F, Cheng Y, Xu Z Z, et al. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser[J]. Opt Lett, 2010, 35(3): 282−284. doi: 10.1364/OL.35.000282

    [88]

    Jipa F, Iosub S, Calin B, et al. High repetition rate UV versus VIS picosecond laser fabrication of 3D microfluidic channels embedded in photosensitive glass[J]. Nanomaterials (Basel), 2018, 8(8): 583. doi: 10.3390/nano8080583

    [89]

    Capuano L, Berenschot J W, Tiggelaar R M, et al. Fabrication of microstructures in the bulk and on the surface of sapphire by anisotropic selective wet etching of laser-affected volumes[J]. J Micromech Microeng, 2022, 32(12): 125003. doi: 10.1088/1361-6439/ac9911

    [90]

    Hua J G, Liang S Y, Chen Q D, et al. Free-form micro-optics out of crystals: femtosecond laser 3D sculpturing[J]. Adv Funct Mater, 2022, 32(26): 2200255. doi: 10.1002/adfm.202200255

    [91]

    Gao S, Li Z Z, Hu Z Y, et al. Diamond optical vortex generator processed by ultraviolet femtosecond laser[J]. Opt Lett, 2020, 45(9): 2684−2687. doi: 10.1364/OL.391598

    [92]

    Liu X Q, Zhang Y L, Li Q K, et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 2022, 3(1): 1. doi: 10.1186/s43074-022-00047-3

    [93]

    Masuda M, Sugioka K, Cheng Y, et al. Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application[J]. Appl Phys A, 2004, 78(7): 1029−1032. doi: 10.1007/s00339-003-2447-3

    [94]

    Kim S, Kim J, Joung Y H, et al. Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic device with multi-layer micro channels[J]. Micro Nano Syst Lett, 2019, 7(1): 15. doi: 10.1186/s40486-019-0094-5

    [95]

    Shan C, Yang Q, Bian H, et al. Fabrication of three-dimensional microvalves of internal nested structures inside fused silica[J]. Micromachines (Basel), 2021, 12(1): 43. doi: 10.3390/MI12010043

    [96]

    Liao Y, Song J X, Li E, et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab Chip, 2012, 12(4): 746−749. doi: 10.1039/c2lc21015k

    [97]

    张超, 李敏, 叶柏臣, 等. 飞秒激光时空整形的电子动态调控微孔加工[J]. 光电工程, 2022, 49(2): 210389. doi: 10.12086/oee.2022.210389

    Zhang C, Li M, Ye B C, et al. Electrons dynamics control micro-hole drilling using temporally/spatially shaped femtosecond laser[J]. Opto-Electron Eng, 2022, 49(2): 210389. doi: 10.12086/oee.2022.210389

    [98]

    Lu Y M, Duan Y Z, Liu X Q, et al. High-quality rapid laser drilling of transparent hard materials[J]. Opt Lett, 2022, 47(4): 921−924. doi: 10.1364/OL.452530.

    [99]

    Madhukar Y K, Mullick S, Nath A K. A study on co-axial water-jet assisted fiber laser grooving of silicon[J]. J Mater Process Technol, 2016, 227: 200−215. doi: 10.1016/j.jmatprotec.2015.08.013

    [100]

    Li W Y, Luo Y, Xiong B, et al. Fabrication of GaN-based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching[J]. Phys Status Solidi A, 2015, 212(10): 2341−2344. doi: 10.1002/pssa.201532223

    [101]

    Shao Z Q, Wu Y L, Wang S, et al. All-sapphire fiber-optic pressure sensors for extreme harsh environments[J]. Opt Express, 2022, 30(3): 3665−3674. doi: 10.1364/OE.451764

  • 加载中

(8)

(2)

计量
  • 文章访问数:  9335
  • PDF下载数:  1450
  • 施引文献:  0
出版历程
收稿日期:  2022-12-05
修回日期:  2023-02-09
录用日期:  2023-02-10
网络出版日期:  2023-03-16
刊出日期:  2023-03-25

目录

/

返回文章
返回