基于质心寻峰的调频连续波激光干涉位移传感器

张登攀,闫猛超,施安存,等. 基于质心寻峰的调频连续波激光干涉位移传感器[J]. 光电工程,2023,50(6): 220315. doi: 10.12086/oee.2023.220315
引用本文: 张登攀,闫猛超,施安存,等. 基于质心寻峰的调频连续波激光干涉位移传感器[J]. 光电工程,2023,50(6): 220315. doi: 10.12086/oee.2023.220315
Zhang D P, Yan M C, Shi A C, et al. Frequency-modulated continuous-wave laser interferometry displacement sensor based on centroid peak-finding[J]. Opto-Electron Eng, 2023, 50(6): 220315. doi: 10.12086/oee.2023.220315
Citation: Zhang D P, Yan M C, Shi A C, et al. Frequency-modulated continuous-wave laser interferometry displacement sensor based on centroid peak-finding[J]. Opto-Electron Eng, 2023, 50(6): 220315. doi: 10.12086/oee.2023.220315

基于质心寻峰的调频连续波激光干涉位移传感器

  • 基金项目:
    国家自然科学基金资助项目(42276194)
详细信息
    作者简介:
    *通讯作者: 王永杰,wyj@semi.ac.cn
  • 中图分类号: TN247

Frequency-modulated continuous-wave laser interferometry displacement sensor based on centroid peak-finding

  • Fund Project: National Natural Science Foundation of China (42276194)
More Information
  • 调频连续波激光干涉技术在精密测量领域中应用广泛,针对其高精度位移解调问题,本文将质心法应用于其拍频信号的解调中,提出了一种基于质心寻峰法的相位解调算法并进行实验与分析。提出的算法在对截取的拍频信号进行平滑滤波与分峰截幅等处理基础上,通过质心坐标公式得到拍频信号的质心,质心横坐标即为峰值位置,最后通过相位鉴别算法解调出位移。在仿真中设置信噪比(SNR)为15 dB,算法的相位误差为0.016 rad,位移误差为2.04 nm。搭建调频连续波激光干涉位移测量系统进行实验验证,实验结果表明:当固定距离为44 mm时,位移随机误差标准差为2.18 nm。与常规的过零点检测法进行对比分析,结果表明该算法的测量误差降低了49%,分辨率获得了提高,具有广泛的应用前景。

  • Overview: Frequency-modulated continuous wave laser interferometry technology has broad application prospects in modern industrial production due to its advantages of large dynamic range, high precision, and high reliability. The frequency-modulated continuous wave laser is coupled with the Fabry-Perot interferometer in the optical field through optical fiber devices. The signal light and reference light of the interferometer propagate along the same optical fiber arm, which is extremely sensitive to displacement information. The measurement information can be obtained by demodulating the beat signal generated when the reference signal interferes with the measurement signal. In phase demodulation, the extreme point position of the beat frequency signal in one cycle is converted into a change in the initial phase to achieve displacement demodulation. But a beat frequency signal is a kind of sine signal with low signal noise, unequal amplitude, and frequency. It needs signal preprocessing to facilitate the subsequent extreme point location. Determining the precise position of the peak is the key problem in displacement demodulation.

    Aiming at the demodulation problem of frequency modulation continuous wave interference beat frequency signal, this paper applies the centroid method to the field of the beat frequency signal demodulation and proposes a phase demodulation algorithm based on the centroid peak finding method. Compared with the existing phase demodulation algorithm, the algorithm does not need amplitude correction. After smooth filtering and minimum point positioning of the signal, the peak point position of the beat frequency signal can be accurately obtained by the centroid method, and the displacement amount can be obtained after phase demodulation according to this peak point position. A frequency-modulated continuous wave interferometric ranging system was constructed, and test experiments were carried out. The random error distribution of the displacement is verified when the length of the F-P cavity is fixed, and the standard deviation of the error is 2.18 nm. In order to compare the centroid peak-finding method proposed in this paper with the conventional zero-crossing detection method, the displacement random error of the two methods is obtained by using the built frequency modulated continuous wave ranging system with fixed different distances, and its standard deviation is calculated. Experimental results show that the measurement error of the method proposed in this paper is reduced by 49% compared to the traditional zero-crossing detection method. It has important research significance in the field of laser interferometry and has broad application prospects in the field of precision measurement.

  • 加载中
  • 图 1  锯齿波调制时参考波与信号波的频率关系

    Figure 1.  Frequency relationship between reference wave and signal wave in sawtooth wave modulation

    图 2  基于过零点检测法的相位解调算法流程图

    Figure 2.  Flow chart of phase demodulation algorithm based on zero-crossing detection method

    图 3  拍频信号分峰截幅

    Figure 3.  Beat signal peak clipping

    图 4  基于质心寻峰法相位解调算法流程图

    Figure 4.  Flow chart of the phase demodulation algorithm based on centroid peak-finding method

    图 5  10~60 dB信噪比对应的相位误差与位移误差。(a)过零点检测法;(b)质心寻峰法

    Figure 5.  Phase error and displacement error corresponding to 10~60 dB signal to noise ratio. (a) Zero-crossing detection method; (b) Centroid peak-finding method

    图 6  调频连续波激光干涉位移传感器原理图

    Figure 6.  Schematic diagram of a frequency-modulated continuous-wave laser interference displacement sensor

    图 7  调频连续波干涉位移测量系统实物图

    Figure 7.  Physical drawing of FMCW interferometric displacement measurement system

    图 8  采集得到的拍频信号与锯齿波信号。(a)锯齿波调制信号;(b)拍频信号

    Figure 8.  Beat signal and sawtooth signal acquired. (a) Sawtooth signal; (b) Beat signal

    图 9  过零点检测法固定F-P腔腔长44 mm时位移随机误差及分布。(a)固定距离位移随机误差;(b)随机误差分布

    Figure 9.  Random error and distribution of displacement when the length of the F-P cavity is 44 mm fixed by zero-crossing detection method. (a) Random error of displacement fixed distance; (b) Random error distribution

    图 10  质心寻峰法固定F-P腔腔长44 mm时位移随机误差及分布。(a)固定距离位移随机误差;(b)随机误差分布

    Figure 10.  The random error and distribution of displacement when the length of the F-P cavity is 44 mm fixed by the centroid peak-finding method. (a) Random error of displacement fixed distance; (b) Random error distribution

    图 11  不同F-P腔腔长过零点检测法与质心寻峰法的位移随机误差标准差对比图

    Figure 11.  Comparison of the standard deviation of displacement random error between zero-crossing detection method and centroid peak-finding method when F-P cavity length is different

  • [1]

    谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用[J]. 中国激光, 2021, 48(15): 1504001. doi: 10.3788/CJL202148.1504001

    Tan Y D, Xu X, Zhang S L. Precision measurement and applications of laser interferometry[J]. Chin J Laser, 2021, 48(15): 1504001. doi: 10.3788/CJL202148.1504001

    [2]

    Palumbo G, Tosi D, Iadicicco A, et al. Analysis and design of chirped fiber bragg grating for temperature sensing for possible biomedical applications[J]. IEEE Photonics J, 2018, 10(3): 7103015. doi: 10.1109/jphot.2018.2829623

    [3]

    王冬, 崔建军, 张福民, 等. 用于微位移测量的迈克尔逊激光干涉仪综述[J]. 计量学报, 2021, 42(1): 1−8. doi: 10.3969/j.issn.1000-1158.2021.01.01

    Wang D, Cui J J, Zhang F M, et al. Review of Michelson laser interferometer for micro displacement measurement[J]. Acta Metrol Sin, 2021, 42(1): 1−8. doi: 10.3969/j.issn.1000-1158.2021.01.01

    [4]

    刘浩, 刘佳, 任乾钰, 等. 基于M-Z干涉仪的光纤法-珀传感器解调方法[J]. 压电与声光, 2021, 43(4): 484−489. doi: 10.11977/j.issn.1004-2474.2021.04.011

    Liu H, Liu J, Ren Q Y, et al. Demodulation method of fiber Fabry-Perot sensor based on Mach-Zehnder interferometer[J]. Piezoelectr Acoustoopt, 2021, 43(4): 484−489. doi: 10.11977/j.issn.1004-2474.2021.04.011

    [5]

    Zheng J. Reflectometric fiber optic frequency-modulated continuous-wave interferometric displacement sensor[J]. Opt Eng, 2005, 44(12): 124404. doi: 10.1117/1.2148939

    [6]

    苏云赫. 调频连续波激光测距系统的仿真与实现[D]. 桂林: 桂林电子科技大学, 2021. https://doi.org/10.27049/d.cnki.ggldc.2021.000073.

    Su Y H. Simulation and realization of frequency modulated continuous wave laser ranging system[D]. Guilin: Guilin University of Electronic Technology, 2021. https://doi.org/10.27049/d.cnki.ggldc.2021.000073.

    [7]

    井李强, 郑刚, 孙彬, 等. 基于调频连续波干涉技术的运动目标距离测量[J]. 中国激光, 2019, 46(12): 1204001. doi: 10.3788/CJL201946.1204001

    Jing L Q, Zheng G, Sun B, et al. Measurement of distance to moving target using frequency-modulated continuous-wave interference technique[J]. Chin J Laser, 2019, 46(12): 1204001. doi: 10.3788/CJL201946.1204001

    [8]

    郭天茂. 调频连续波激光测距技术信号处理方法的研究[D]. 北京: 中国运载火箭技术研究院, 2019. https://doi.org/10.27096/d.cnki.ghtdy.2019.000029.

    Guo T M. Study on signal processing method in frequency modulated continuous wave laser ranging technology[D]. Beijing: China Academy of Launch Vehicle Technology, 2019. https://doi.org/10.27096/d.cnki.ghtdy.2019.000029.

    [9]

    林伟浩, 孙思明, 胡杰, 等. 基于光纤环形激光器的传感技术研究与应用[J]. 半导体光电, 2022, 43(4): 728−737. doi: 10.16818/j.issn1001-5868.2022072801

    Lin W H, Sun S M, Hu J, et al. Research and application of sensing technology based on fiber ring laser[J]. Semicond Optoelectron, 2022, 43(4): 728−737. doi: 10.16818/j.issn1001-5868.2022072801

    [10]

    韩园, 郑刚, 张雄星, 等. 基于STM32H743的调频连续波位移传感器[J]. 激光与光电子学进展, 2021, 58(11): 1112007. doi: 10.3788/LOP202158.1112007

    Han Y, Zheng G, Zhang X X, et al. Frequency modulation continuous wave displacement sensor based on STM32H743[J]. Laser Optoelectr Prog, 2021, 58(11): 1112007. doi: 10.3788/LOP202158.1112007

    [11]

    王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506

    Wang H, Zheng G, Chen H B, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electron Eng, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506

    [12]

    白浪, 郑刚, 张雄星, 等. 调频连续波光纤压力传感器及其测量特性分析[J]. 光学学报, 2021, 41(3): 0328002. doi: 10.3788/AOS202141.0328002

    Bai L, Zheng G, Zhang X X, et al. Optical fiber pressure sensor based on frequency-modulated continuous-wave and analysis of its measurement characteristic[J]. Acta Opt Sin, 2021, 41(3): 0328002. doi: 10.3788/AOS202141.0328002

    [13]

    郭媛. 调频连续波干涉仪激光波长稳定性研究[D]. 西安: 西安工业大学, 2022.

    Guo Y. Research on laser wavelength stability of frequency modulated continuous wave interferometer[D]. Xi'an: Xi'an Technological University, 2022.

    [14]

    Zhang X X, Zheng G, Jing L Q, et al. A novel digital phase detection method for frequency-modulated continuous-wave interferometric fiber-optic displacement sensor[J]. Optik, 2019, 183: 742−750. doi: 10.1016/j.ijleo.2019.02.156

    [15]

    井李强. 调频连续波激光干涉光纤测距技术的研究[D]. 西安: 西安工业大学, 2020.

    Jing L Q. Study on frequency modulated continuous wave laser interference fiber-optic distance measurement technology[D]. Xi'an: Xi'an Technological University, 2020.

  • 加载中

(12)

计量
  • 文章访问数:  3495
  • PDF下载数:  889
  • 施引文献:  0
出版历程
收稿日期:  2022-11-28
修回日期:  2023-02-03
录用日期:  2023-02-08
刊出日期:  2023-06-25

目录

/

返回文章
返回