-
摘要:
闪烁玻璃由于制备工艺简单,尺寸灵活可控,成本低廉等优点,有望成为中国环形正负电子对撞机(CEPC)中强子量能器的候选材料。其中,以Ce3+发光中心掺杂闪烁玻璃有较好的闪烁性能。玻璃基质可以分为氧化物玻璃、卤化物玻璃和微晶玻璃。本文根据Ce3+掺杂不同玻璃基质分类,重点关注了Ce3+掺杂闪烁玻璃的光学透过率、光产额、衰减时间等闪烁性能和抗辐照特性。并且,总结了国内外以及闪烁玻璃合作组的最新研究成果。针对不同玻璃体系的研究现状,从玻璃组成与制备工艺等两个方面探讨了玻璃性能提升手段。最后,对Ce3+掺杂闪烁玻璃未来的研究发展方向做出了展望。
Abstract:Scintillation glasses have potential application in hadron calorimeter of circular electron positron collider (CEPC) due to the advantages of simple preparation process, flexible and controllable size, and low cost. Among them, Ce3+ luminescent center doped scintillation glasses have better scintillation performance. Matrix glass can be classified into oxide glass, halide glass, and glass-ceramic. According to the classification of different matrix glasses, this paper focuses on the optical transmittance, light yield, decay time, and radiation resistance properties of the Ce3+-doped scintillation glasses. Moreover, we introduce and summarize the research progress at domestic, foreign, and GS R&D Group. In view of the research status of different glasses, the methods for improving the glass performance are discussed from two aspects of glass composition and preparation. Finally, the future research and development directions of Ce3+-doped scintillation glasses are prospected.
-
Key words:
- hadron calorimeter /
- scintillation glass /
- Ce3+ luminescent center /
- scintillation
-
Overview: Nowadays, scintillation glass has attracted worldwide attention and plays an important role in medical imaging, high energy physics, environmental monitoring, and security inspection. Scholars are exploring the application prospects of scintillation glass in high energy physics and other fields. At present, the maximum light yield of the Ce3+-doped scintillating glass can reach 4300 ph/MeV, and the maximum density can exceed 6.9 g/cm3.
With the rapid development of high energy physics, the concept of circular electron positron collider (CEPC) has been proposed. The structure of scintillation glass and silicon photomultiplier (SiPM) may be used in hadron calorimeter of CEPC. It requires a large density (>6 g/cm3) and considerable scintillation performance (light yield >1000 ph/MeV, decay time <100 ns). Among them, the Ce3+-doped glasses have better scintillation properties.
In this paper, the glasses are divided into oxide glasses, halide glasses, and glass ceramics according to the different substrates doped with Ce3+. Moreover, we focus on the optical transmittance, light yield, decay time, and irradiation resistance of the Ce3+-doped scintillation glasses. Moreover, we introduce and summarize the research progress at domestic, foreign, and GS R&D Group. In view of the research status of different glasses, the methods for improving the glass performance are discussed from two aspects of glass composition and preparation. Finally, the future research and development directions of Ce3+-doped scintillation glass are prospected.
In order to improve the scintillation performance of the glasses, future preparation methods and research directions can focus on 1) reducing impurities in glass raw materials through further purification to reduce defects in the glass; 2) Add an appropriate amount of clarifying agent and improving the glass stirring process to reduce the bubbles in the glass; 3) using a reducing atmosphere and a appropriate reducing agent to avoid the oxidation of Ce ions; 4) Partial fluoride can be used to replace the oxide to reduce the melting point of the glass, reduce the introduction of impurities in the corundum crucible, and improve the uniformity of the glass; 5) Reduce the introduction of elements that are unfavorable to scintillation performance in glass, and increase the proportion of Gd element in the glass. Exploring suitable scintillation glass components and glass preparation processes is the key to the long-term development and real application of scintillation glass in the future.
-
表 1 闪烁玻璃性能参数
Table 1. Performance parameters of scintillation glass
参数 Parameter Abbreviations 密度 Density Den. 发射峰 Emission peak EP 量子产率 Quantum yield QY 光致发光衰减时间 Photoluminescence decay time PL DT 闪烁衰减时间 Scintillation decay time Sc. DT 光产额 Light yield LY 能量分辨率 Energy resolution ER 表 2 Ce3+掺杂硼酸盐玻璃的性能参数
Table 2. Performance parameters of Ce3+-doped borate glasses
Num. Den./(g/cm3) EP/nm QY/% PL DT/ns Sc. DT/ns LY/(ph/MeV) ER/% B-1 3.8 400 42 36 / / / B-2 / 360 50 33.4 27.2 / / B-3 3.4 360 70.1 37.89 40.1, 270.8 1800 / B-4 / 360 82 38 42, 202 256 / B-5 / 380 / 37.63 - / / 表 3 Ce3+掺杂硅酸盐玻璃的性能参数
Table 3. Performance parameters of Ce3+-doped silicate glasses
Num. Den./(g/cm3) EP/nm QY/% PL DT/ns Sc. DT/ns LY/(ph/MeV) ER/% S-1 4.2 430 / 43.9, 73.8 90.8, 415.6 2500 / S-2 / 420 2 3 3.5 700 / S-3 4.4 431 / / 522 3460 14 S-4 / 410 20 38.1 109 / / S-5 4.5 430 / 44, 89 93, 317 2000 / 表 4 Ce3+掺杂硼硅酸盐玻璃的性能参数
Table 4. Performance parameters of Ce3+-doped borosilicate glasses
Num. Den. /(g/cm3) EP/nm QY/% PL DT/ns Sc DT/ns ER/% BS-1 4.9 420 / / 400 / BS-2 3.9 403 / 26.6 / / BS-3 / 350 8 30.8 64 / BS-4 2.4 368 / 40 / / 表 5 Ce3+掺杂卤化物玻璃的性能参数
Table 5. Performance parameters of Ce3+-doped halide glasses
Num. Den./(g/cm3) EP/nm QY/% PL DT/ns Sc. DT/ns LY/(ph/MeV) H-1 6.9 325 / 5.5, 23.4 / / H-2 6.0 325 / 33.2 8, 25 150 H-3 4.6 367 / 35 37 97.2 H-4 / 330 58.7 35.4 34.9, 203.7 93 H-5 / 350 75.7 26.1 24.0 23 表 6 Ce3+掺杂微晶玻璃的性能参数
Table 6. Performance parameters of Ce3+-doped glass ceramics
Num. Den./(g/cm3) EP/nm QY/% PL DT/ns Sc. DT/ns LY/(ph/MeV) ER/% GC-1 2.45 / / / / 240% GS20 / GC-2 / 397 / 42 / / / GC-3 / 370 / 33 / / / GC-4 / 420 / 38.2 / / / 表 7 合作组研制的闪烁玻璃性能
Table 7. Performance of scintillation glass developed by R&D group
Num. Den./(g/cm3) EP/nm PLDT/ns Sc.DT/ns LY/(ph/MeV) ER/% GS-1 4.5 390 41.69 262.1, 1234.8 802 26.8 GS-2 4.2 430 63.44 346.3, 1740.1 1206 23.0 GC-1 3.2 380 53.6 / 853 22.3 GC-2 3.3 380 / 210.4, 1622.0 1601 27.3 -
[1] 吕时超, 周时凤, 唐俊州, 等. 玻璃闪烁体的研究进展[J]. 光子学报, 2019, 48(10): 1148011. doi: 10.3788/gzxb20194811.1148011
Lü S C, Zhou S F, Tang J Z, et al. Research progress in development of glass scintillator[J]. Acta Photon Sin, 2019, 48(10): 1148011. doi: 10.3788/gzxb20194811.1148011
[2] 姚保利, 雷铭, 薛彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607−1618. doi: 10.3788/gzxb20114011.1607
Yao B L, Lei M, Xue B, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photon Sin, 2011, 40(11): 1607−1618. doi: 10.3788/gzxb20114011.1607
[3] 顾鹏, 王鹏刚, 官伟明, 等. LYSO: Ce闪烁晶体的研究进展[J]. 人工晶体学报, 2021, 50(10): 1858−1869. doi: 10.3969/j.issn.1000-985X.2021.10.005
Gu P, Wang P G, Guan W M, et al. Research progress on LYSO: Ce scintillation crystals[J]. J Synth Cryst, 2021, 50(10): 1858−1869. doi: 10.3969/j.issn.1000-985X.2021.10.005
[4] Owens A, Bos A J J, Brandenburg S, et al. Assessment of the radiation tolerance of LaBr3: Ce scintillators to solar proton events[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Dect Assoc Equip, 2007, 572(2): 785−793. doi: 10.1016/j.nima.2006.12.008
[5] Han J F, Zhu J L, Wang Z H, et al. Pulse characteristics of CLYC and piled-up neutron–gamma discrimination using a convolutional neural network[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Dect Assoc Equip, 2022, 1028: 166328. doi: 10.1016/J.NIMA.2022.166328
[6] 尹士玉, 郭浩, 颜敏, 等. 无机闪烁体性能测试方案研究[J]. 光电工程, 2021, 48(6): 210038. doi: 10.12086/oee.2021.210038
Yin S Y, Guo H, Yan M, et al. Study on performance test plan of inorganic scintillator[J]. Opto-Electron Eng, 2021, 48(6): 210038. doi: 10.12086/oee.2021.210038
[7] Peng S, Hua Z H, Wu Q, et al. Piled-up neutron-gamma discrimination system for CLLB using convolutional neural network[J]. J Instrum, 2022, 17: T08001. doi: 10.1088/1748-0221/17/08/T08001
[8] Zhu Y, Qian S, Wang Z G, et al. Scintillation properties of GAGG: Ce ceramic and single crystal[J]. Opt Mater, 2020, 105: 109964. doi: 10.1016/j.optmat.2020.109964
[9] Tang G, Hua Z H, Qian S, et al. Optical and scintillation properties of aluminoborosilicate glass[J]. Opt Mater, 2022, 130: 112585. doi: 10.1016/j.optmat.2022.112585
[10] Struebing C, Beckert M B, Nadler J H, et al. Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy[J]. J Am Ceram Soc, 2018, 101(3): 1116−1121. doi: 10.1111/jace.15273
[11] Zou W C, Martin S W, Schwellenbach D, et al. New high-density fluoride glasses doped with CeF3[J]. J Non-Cryst Solids, 1995, 184: 84−92. doi: 10.1016/0022-3093(95)00002-X
[12] Auffray E, Akchurin N, Benaglia A, et al. DSB: Ce3+ scintillation glass for future[J]. J Phys Conf Ser, 2015, 587: 012062. doi: 10.1088/1742-6596/587/1/012062
[13] Aydın G. Simulation study for the energy resolution performances of homogenous calorimeters with scintillator-photodetector combinations[J]. Adv High Energy Phys, 2018, 2018: 4791509. doi: 10.1155/2018/4791509
[14] Xiu Q L, Zhu H B, Yue T, et al. Study of beamstrahlung effects at CEPC[J]. Chin Phys C, 2016, 40(5): 053001. doi: 10.1088/1674-1137/40/5/053001
[15] Li L, Shan Q, Jia W, et al. Optimization of the CEPC-AHCAL scintillator detector cells[J]. J Instrum, 2021, 16(3): P03001. doi: 10.1088/1748-0221/16/03/P03001
[16] Qian S. Status of the scintillation glass HCAL[Z]. CEPC Day, 2022. https://indico.ihep.ac.cn/event/16585/contributions/49055/attachments/23377/26500/Research_progress_of_glass_scintillator_for_CEPC-V3.0.pdf
[17] Chiodini N, Fasoli M, Martini M, et al. High-efficiency SiO2: Ce3+ glass scintillators[J]. Appl Phys Lett, 2002, 81(23): 4374−4376. doi: 10.1063/1.1524294
[18] Hu P, Hua Z H, Ma L S, et al. Study on the optimized energy resolution of scintillator detectors based on SiPMs and LYSO: Ce[J]. J Instrum, 2022, 17(9): T09010. doi: 10.1088/1748-0221/17/09/T09010
[19] 王阳, 马秀荣, 钱森, 等. 超快速MCP-PMT的时间特性测试方法研究[J]. 光电工程, 2020, 47(2): 190635. doi: 10.12086/oee.2020.190635
Wang Y, Ma X R, Qian S, et al. The study of test method of time characteristic for ultra-fast-MCP-PMT[J]. Opto-Electron Eng, 2020, 47(2): 190635. doi: 10.12086/oee.2020.190635
[20] Nikl M. Scintillation detectors for x-rays[J]. Meas Sci Technol, 2006, 17(4): R37−R54. doi: 10.1088/0957-0233/17/4/R01
[21] Torimoto A, Masai H, Okada G, et al. Emission properties of cerium-doped barium borate glasses for scintillator applications[J]. Radiat Meas, 2017, 106: 46−51. doi: 10.1016/j.radmeas.2017.05.012
[22] Torimoto A, Masai H, Okada G, et al. Emission properties of Ce-doped alkaline earth borate glasses for scintillator applications[J]. Opt Mater, 2017, 73: 517−522. doi: 10.1016/j.optmat.2017.09.006
[23] Nakauchi D, Okada G, Fujimoto Y, et al. Optical and radiation-induced luminescence properties of Ce-doped magnesium aluminoborate glasses[J]. Opt Mater, 2017, 72: 190−194. doi: 10.1016/j.optmat.2017.05.063
[24] Samizo H, Shinozaki K, Kato T, et al. X-ray induced luminescence properties of Ce-doped BaF2-Al2O3-B2O3 glasses[J]. Opt Mater, 2019, 90: 64−69. doi: 10.1016/j.optmat.2019.01.035
[25] Kato T, Hirano S, Samizo H, et al. Dosimetric, luminescence and scintillation properties of Ce-doped CaF2-Al2O3-B2O3 glasses[J]. J Non-Cryst Solids, 2019, 509: 60−64. doi: 10.1016/j.jnoncrysol.2018.12.025
[26] Sun X Y, Gao P, Zheng Y Q, et al. Enhanced emission intensity of Ce3+ ions in Li2O–B2O3–Gd2O3 scintillating glasses by adding carbon and Si3N4 agent[J]. J Non-Cryst Solids, 2015, 422: 12−15. doi: 10.1016/j.jnoncrysol.2015.05.008
[27] Novotny R W, Brinkmann K T, Dormenev V, et al. Performance of DSB – a new glass and glass ceramic as scintillation material for future calorimetry[J]. J Phys Conf Ser, 2019, 1162: 012023. doi: 10.1088/1742-6596/1162/1/012023
[28] Dormenev V, Amelina A, Auffray E, et al. Multipurpose Ce-doped Ba-Gd silica glass scintillator for radiation measurements[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Detect Assoc Equip, 2021, 1015: 165762. doi: 10.1016/j.nima.2021.165762
[29] Brinkman K T, Borisevich A, Dormenev V, et al. Radiation damage and recovery of medium heavy and light inorganic crystalline, glass and glass ceramic materials after irradiation with 150 MeV protons and 1.2 MeV gamma-rays[C]//Proceedings of 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle, 2016.
[30] Yanagida T, Ueda J, Masai H, et al. Optical and scintillation properties of Ce-doped 34Li2O–5MgO–10Al2O3–51SiO2 glass[J]. J Non-Cryst Solids, 2016, 431: 140−144. doi: 10.1016/j.jnoncrysol.2015.04.033
[31] Isokawa Y, Nakauchi D, Okada G, et al. Radiation induced luminescence properties of Ce-doped Y2O3-Al2O3-SiO2 glass prepared using floating zone furnace[J]. J Alloys Compd, 2019, 782: 859−864. doi: 10.1016/j.jallcom.2018.12.245
[32] Amelina A, Mikhlin A, Belus S, et al. (Gd, Ce)2O3-Al2O3-SiO2 scintillation glass[J]. J Non-Cryst Solids, 2022, 580: 121393. doi: 10.1016/j.jnoncrysol.2021.121393
[33] Fu J, Parker J M, Brown R M, et al. Compositional dependence of scintillation yield of glasses with high Gd2O3 concentrations[J]. J Non-Cryst Solids, 2003, 326–327: 335−338. doi: 10.1016/S0022-3093(03)00428-9
[34] Zuo C G, Zhou Z H, Zhu L G, et al. Spectroscopic properties of Ce3+-doped borosilicate glasses under UV excitation[J]. Mater Res Bull, 2016, 83: 155−159. doi: 10.1016/j.materresbull.2016.06.001
[35] Isokawa Y, Hirano S, Okada G, et al. Characterization of Ce-doped lithium borosilicate glasses as tissue-equivalent phosphors for radiation measurements[J]. Radiat Meas, 2018, 111: 13−18. doi: 10.1016/j.radmeas.2018.02.009
[36] Pan L Y, Daguano J K M F, Trindade N M, et al. Scintillation, luminescence and optical properties of Ce-Doped borosilicate glasses[J]. Opt Mater, 2020, 104: 109847. doi: 10.1016/j.optmat.2020.109847
[37] Hirano S, Kuro T, Tatsumi H, et al. Scintillation, TSL and OSL properties of Ce-doped 30Zn3(PO4)2–70Al(PO3)3 glasses[J]. J Mater Sci Mater Electron, 2017, 28(8): 6064−6070. doi: 10.1007/s10854-016-6282-7
[38] Masai H, Shinozaki K, Okada G, et al. Luminescence of Ce3+ in aluminophosphate glasses prepared in air[J]. J Lumin, 2018, 195: 413−419. doi: 10.1016/j.jlumin.2017.11.063
[39] Shiratori D, Kawaguchi N, Yanagida T. Scintillation properties of xCe: 30Rb2O-30BaO-10Al2O3–30P2O5 glasses[J]. Jpn J Appl Phys, 2020, 59: SCCB16. doi: 10.7567/1347-4065/ab48c2
[40] Sun X Y, Ye Z P, Wu Y T, et al. A simple and highly efficient method for synthesis of Ce3+-activated borogermanate scintillating glasses in air[J]. J Am Ceram Soc, 2014, 97(11): 3388−3391. doi: 10.1111/jace.13296
[41] Sun X Y, Yuan Y, Xiao Z H, et al. Optical investigation of Ce3+-activated borogermanate glass induced by substitution of BaF2 for BaO[J]. J Am Ceram Soc, 2015, 98(12): 3655−3658. doi: 10.1111/jace.13934
[42] Auffray E, Bouttet D, Dafinei I, et al. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Detect Assoc Equip, 1996, 380(3): 524−536. doi: 10.1016/0168-9002(96)00717-6
[43] Hu C, Margaryan A, Margaryan A, et al. Alkali-free Ce-doped and co-doped fluorophosphate glasses for future HEP experiments[J]. Nucl Instrum Methods Phys Res Sec A Accel Spectrom Detect Assoc Equip, 2020, 954: 161665. doi: 10.1016/j.nima.2018.11.124
[44] Akatsuka M, Shinozaki K, Nakauchi D, et al. Scintillator and dosimeter properties of Ce3+ doped CaF2-AlF3-AlPO4 glasses[J]. Opt Mater, 2019, 94: 86−91. doi: 10.1016/j.optmat.2019.04.064
[45] Ito G, Kimura H, Shiratori D, et al. Optical and scintillation properties of Ce-doped 20CsCl-20BaCl2–60ZnCl2 glasses[J]. Optik, 2021, 226: 165825. doi: 10.1016/j.ijleo.2020.165825
[46] 孙博超, 隋泽萱, 王慈, 等. 纳米晶复合玻璃闪烁体: 机遇与挑战[J]. 硅酸盐学报, 2022, 50(4): 1143−1159. doi: 10.14062/j.issn.0454-5648.20211116
Sun B C, Sui Z X, Wang C, et al. Nano-glass composite scintillators: opportunities and challenges[J]. J Chin Ceram Soc, 2022, 50(4): 1143−1159. doi: 10.14062/j.issn.0454-5648.20211116
[47] Nikitin A, Fedorov A, Korjik M. Novel glass ceramic scintillator for detection of slow neutrons in well logging applications[J]. IEEE Trans Nucl Sci, 2013, 60(2): 1044−1048. doi: 10.1109/TNS.2013.2251748
[48] Huang S M, Gao Q C, Gu M. Enhanced luminescence in transparent glass ceramics containing BaYF5: Ce3+ nanocrystals[J]. J Lumin, 2012, 132(3): 750−754. doi: 10.1016/j.jlumin.2011.11.002
[49] Liu P, Lv S C, Chen X P, et al. Crystallization control toward colorless cerium-doped scintillating glass[J]. Opt Express, 2018, 26(16): 20582−20589. doi: 10.1364/OE.26.020582
[50] Du Y, Han S, Zou Y, et al. Luminescence properties of Ce3+ -doped oxyfluoride aluminosilicate glass and glass ceramics[J]. Opt Mater, 2019, 89: 243−249. doi: 10.1016/j.optmat.2019.01.018
[51] Tang J Z, Lv S C, Lin Z Y, et al. Pressureless crystallization of glass toward scintillating composite with high crystallinity for radiation detection[J]. J Mater Sci Technol, 2022, 129: 173−180. doi: 10.1016/j.jmst.2022.04.041
[52] Sun X Y, Xiao Z H, Wu Y T, et al. Role of Al3+ on tuning optical properties of Ce3+-activated borosilicate scintillating glasses prepared in air[J]. J Am Ceram Soc, 2018, 101(10): 4480−4485. doi: 10.1111/jace.15773
[53] Sun X Y, Xiao Z H, Wu Y T, et al. Fast Ce3+-activated borosilicate glass scintillators prepared in air atmosphere[J]. Ceram Int, 2017, 43(3): 3401−3404. doi: 10.1016/j.ceramint.2016.11.187
[54] Sun X Y, Liu X J, Xiao Z H, et al. Enhancement of emission intensity in Ce3+-activated aluminoborosilicate scintillating glass synthesized in air[J]. J Am Ceram Soc, 2020, 103(2): 768−772. doi: 10.1111/jace.16882
[55] Sun X Y, Liu X J, Wu Y T, et al. Enhanced emission intensity of Ce3+-doped aluminoborosilicate glasses prepared in air[J]. Ceram Int, 2020, 46(3): 4035−4038. doi: 10.1016/j.ceramint.2019.10.109
[56] Wu T, Hua Z H, Tang G, et al. Enhanced photoluminescence quantum yield of Ce3+-doped aluminum-silicate glasses for scintillation application[J]. J Am Ceram Soc, 2023, 106(1): 476−487. doi: 10.1111/jace.18761
[57] Sun B C, Xie Y Q, Zhao Y L, et al. A highly robust Ce3+-doped and Gd3+-mixed KLaF4 nano-glass composite scintillator[J]. J Mater Chem C, 2021, 9(48): 17504−17510. doi: 10.1039/D1TC04772H