基于激光雷达数据的火星表面障碍物识别

陈海平,李萌阳,曹庭分,等. 基于激光雷达数据的火星表面障碍物识别[J]. 光电工程,2023,50(2): 220240. doi: 10.12086/oee.2023.220240
引用本文: 陈海平,李萌阳,曹庭分,等. 基于激光雷达数据的火星表面障碍物识别[J]. 光电工程,2023,50(2): 220240. doi: 10.12086/oee.2023.220240
Chen H P, Li M Y, Cao T F, et al. Obstacle recognition on Mars surface based on LiDAR data[J]. Opto-Electron Eng, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240
Citation: Chen H P, Li M Y, Cao T F, et al. Obstacle recognition on Mars surface based on LiDAR data[J]. Opto-Electron Eng, 2023, 50(2): 220240. doi: 10.12086/oee.2023.220240

基于激光雷达数据的火星表面障碍物识别

  • 基金项目:
    国家自然科学基金资助项目(U20A20215)
详细信息
    作者简介:
    *通讯作者: 王成程,wchch_caep@163.com
  • 中图分类号: P237

Obstacle recognition on Mars surface based on LiDAR data

  • Fund Project: National Natural Science Foundation of China (U20A20215)
More Information
    *Corresponding author: wchch_caep@163.com
  • 火星车的环境感知能力是其进行智能移动和探测的基础,而障碍物检测识别是环境感知中的一个重要方面,识别效果直接决定了火星车工作能力和安全性。本文提出一种基于激光雷达数据的火星表面障碍物自动识别方法。通过获取的激光雷达点云数据,首先在分析激光反射强度理论的基础上,通过强度补偿理论将点云强度根据距离、角度因素进行修正,进而构建激光雷达强度值与目标特征的反射关系。通过大津法自动求取全局阈值,自适应的将火星表面点云分类为障碍物点云和非障碍物点云;然后通过曲率约束剔除不符合条件的障碍物点云;最后利用基于八叉树叶节点的连通性聚类,实现火星表面障碍物点云的识别。模拟实验结果表明,该方法可实现激光雷达点云中的火星表面障碍物有效提取,典型障碍物识别精度接近90%,为基于火星车障碍物检测和环境感知相关研究提供借鉴。

  • 加载中
  • 图 1  障碍物点云空间八叉树剖分示意图

    Figure 1.  Diagram of the obstacle point cloud octree-based space division

    图 2  实验数据。(a) 二维场景图; (b) 三维点云; (c) 高程渲染

    Figure 2.  Experimental dataset. (a) Two-dimensional scene diagram; (b) Three-dimensional point cloud; (c) Elevation rendering

    图 3  实验数据反射强度直方图

    Figure 3.  Intensity histogram of the experimental dataset

    图 4  实验区障碍物点云分类结果(俯视图)

    Figure 4.  Obstacle point cloud classification results in the experimental area (vertical view)

    图 5  实验区障碍物点云识别结果(俯视图)

    Figure 5.  Obstacle point cloud recognition results in the experimental area (vertical view)

    图 6  实验区典型障碍物识别结果(俯视图)

    Figure 6.  Representative obstacle recognition results in the experimental area (vertical view)

    图 7  实验区障碍物标注真值图

    Figure 7.  True value diagram of obstacle labeling in the experimental area

    表 1  障碍物目标识别精度统计

    Table 1.  Accuracy statistics of obstacle recognition

    I class error/%Ⅱ class error/%Total error/%
    11.53.484.91
    下载: 导出CSV
  • [1]

    吴伟仁, 刘晓川. 国外深空探测的发展研究[J]. 中国航天, 2004(1): 26−29.

    Wu W R, Liu X C. A survey of deep space exploration activities abroad[J]. Aerosp China, 2004(1): 26−29.

    [2]

    Golombek M P, Arvidson R E, Bell III J F, et al. Assessment of Mars Exploration Rover landing site predictions[J]. Nature, 2005, 436(7047): 44−48. doi: 10.1038/nature03600

    [3]

    沈鹏. 多源火星形貌数据处理与信息服务系统构建关键技术研究[D]. 郑州: 解放军信息工程大学, 2017.

    Shen P. Research on the key technology of multi source mars data processing and spatial information service system[D]. Zhengzhou: PLA Information Engineering University, 2017.

    [4]

    Kirk R L, Howington-Kraus E, Rosiek M R. Recent planetary topographic mapping at the USGS, Flagstaff: moon, Mars, Venus, and beyond[C]//Proceedings of XIXth ISPRS Congress Technical Commission IV: Mapping and Geographic Systems, Amsterdam, Netherlands, 2000: 476–490.

    [5]

    冯伟, 易旺民, 杨旺, 等. “天问一号”探测器舱体抛离试验系统设计与验证[J]. 航天返回与遥感, 2021, 42(3): 23−31. doi: 10.3969/j.issn.1009-8518.2021.03.003

    Feng W, Yi W M, Yang W, et al. Design and verification of tianwen-1 probe cabin separation test system[J]. Spacecr Recovery Remote Sens, 2021, 42(3): 23−31. doi: 10.3969/j.issn.1009-8518.2021.03.003

    [6]

    马友青, 彭松, 张建利, 等. 祝融号火星车在轨高精度视觉定位与地形重建[J]. 科学通报, 2022, 67(23): 2790−2801. doi: 10.1360/TB-2021-1273

    Ma Y Q, Peng S, Zhang J L, et al. Precise visual localization and terrain reconstruction for China’s Zhurong Mars rover on orbit[J]. Chin Sci Bull, 2022, 67(23): 2790−2801. doi: 10.1360/TB-2021-1273

    [7]

    王东署, 王佳. 未知环境中移动机器人环境感知技术研究综述[J]. 机床与液压, 2013, 41(15): 187−191. doi: 10.3969/j.issn.1001-3881.2013.15.050

    Wang D S, Wang J. Research review of environmental cognition techniques of mobile robots in unknown environment[J]. Mach Tool Hydraul, 2013, 41(15): 187−191. doi: 10.3969/j.issn.1001-3881.2013.15.050

    [8]

    李国庆. 行星表面障碍检测与地形相关导航方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    Li G Q. Research on methods of autonomous hazard detection on planetary surface and terrain relative navigation[D]. Harbin: Harbin Institute of Technology, 2018.

    [9]

    肖学明. 火星表面障碍检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Xiao X M. Research on Martian hazard detection method[D]. Harbin: Harbin Institute of Technology, 2017.

    [10]

    赵一兵, 王荣本, 李琳辉, 等. 基于多传感器信息的前方障碍物检测[J]. 计算机工程与应用, 2007, 43(26): 174−177,226. doi: 10.3321/j.issn:1002-8331.2007.26.051

    Zhao Y B, Wang R B, Li L H, et al. Approach of obstacle detection based on laser sensor and single camera[J]. Comput Eng Appl, 2007, 43(26): 174−177,226. doi: 10.3321/j.issn:1002-8331.2007.26.051

    [11]

    侯建. 月球车立体视觉与视觉导航方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Hou J. Research on stereo vision and visual navigation for a lunar rover[D]. Harbin: Harbin Institute of Technology, 2007.

    [12]

    石德乐, 叶培建, 贾阳. 我国月面巡视探测器定位方法研究[J]. 航天器工程, 2006, 15(4): 14−20.

    Shi D L, Ye P J, Jia Y. Study on Chinese lunar rover location methods[J]. Spacecr Eng, 2006, 15(4): 14−20.

    [13]

    郭丽, 李金岭, 童锋贤, 等. 同波束VLBI技术对嫦娥三号巡视器的高精度相对定位[J]. 武汉大学学报·信息科学版, 2016, 41(8): 1125−1130. doi: 10.13203/j.whugis20140439

    Guo L, Li J L, Tong F X, et al. Precisely relative positioning of Chang’e 3 rover with SBI delta VLBI delay measurements[J]. Geomat Inf Sci Wuhan Univ, 2016, 41(8): 1125−1130. doi: 10.13203/j.whugis20140439

    [14]

    Li R X, Ma F, Xu F L, et al. Large scale mars mapping and rover localization using descent and rover imagery[J]. Int Arch Photogramm Remote Sens, 2000, 33: 579−586.

    [15]

    Di K C, Xu F L, Wang J, et al. Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission[J]. ISPRS J Photogramm Remote Sens, 2008, 63(2): 181−201. doi: 10.1016/j.isprsjprs.2007.07.007

    [16]

    Alexander D A, Deen R G, Andres P M, et al. Processing of Mars Exploration Rover imagery for science and operations planning[J]. J Geophys Res:Planets, 2006, 111(E2): E02S02. doi: 10.1029/2005JE002462

    [17]

    刘继周. 面向无人驾驶的智能车系统平台研究与应用[D]. 杭州: 浙江大学, 2017.

    Liu J Z. Research and application towards autonomous driving-system and platform[D]. Hangzhou: Zhejiang University, 2017.

    [18]

    张振华. 基于激光点云数据的障碍物检测算法研究[D]. 济南: 山东大学, 2020.

    Zhang Z H. Research on obstacle detection algorithm based on laser point cloud data[D]. Ji’nan: Shandong University, 2020.

    [19]

    肖志鹏. 无人车动态场景分析关键技术研究[D]. 长沙: 国防科技大学, 2018.

    Xiao Z P. Research on key technologies of dynamic scene analysis for autonomous vehicles[D]. Changsha: National University of Defense Technology, 2018.

    [20]

    刘建伟. 多路径激光雷达三维数据处理技术研究[D]. 成都: 电子科技大学, 2018.

    Liu J W. Research on technology of processing 3D data about multi-path of Lidar[D]. Chengdu: University of Electronic Science and Technology of China, 2018.

    [21]

    张桢瑶. 基于路侧三维激光雷达的交通信息提取方法研究[D]. 苏州: 苏州大学, 2020.

    Zhang Z Y. Traffic data extraction based on roadside 3D LiDAR[D]. Suzhou: Soochow University, 2020.

    [22]

    姚辰. 四足机器人非结构环境3D状态感知与自主定位方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Yao C. Research on 3D state sensing and autonomous localization of quadruped robot in unstructured environment[D]. Harbin: Harbin Institute of Technology, 2020.

    [23]

    Pfeifer N, Höfle B, Briese C, et al. Analysis of the backscattered energy in terrestrial laser scanning data[C]//Proceedings of the XXI Congress: Silk Road for Information from Imagery: the International Society for Photogrammetry and Remote Sensing, Beijing, 2008: 1045–1051.

    [24]

    戴永江. 激光雷达原理[M]. 北京: 国防工业出版社, 2002.

    Dai Y J. The Principle of Lidar[M]. Beijing: National Defense Industry Press, 2002.

    [25]

    童祎, 夏珉, 杨克成, 等. 基于激光雷达强度值的目标反射特征提取[J]. 激光与光电子学进展, 2018, 55(10): 102802. doi: 10.3788/LOP55.102802

    Tong Y, Xia M, Yang K C, et al. Target reflection feature extraction based on Lidar intensity value[J]. Laser Optoelectron Prog, 2018, 55(10): 102802. doi: 10.3788/LOP55.102802

    [26]

    王仕儒. 基于分数阶布谷鸟优化的Otsu图像分割算法研究[D]. 银川: 宁夏大学, 2022. https://doi.org/10.27257/d.cnki.gnxhc.2022.000623.

    Wang S R. Research on otsu image segmentation algorithm based on fractional-order cuckoo optimization[D]. Yinchuan: Ningxia University, 2022. https://doi.org/10.27257/d.cnki.gnxhc.2022.000623.

    [27]

    苏天科. 单期点云的高斯曲率定位桥梁潜在损伤技术研究[D]. 北京: 北京建筑大学, 2022. https://doi.org/10.26943/d.cnki.gbjzc.2022.000287.

    Su T K. Research on potential damage locating technique of bridge by Gaussian curvature with single phase point cloud[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2022. https://doi.org/10.26943/d.cnki.gbjzc.2022.000287.

    [28]

    王丽英, 王鑫宁. 多值体素连通区域构建下的机载LIDAR数据三维平面提取[J]. 地球信息科学学报, 2021, 23(9): 1598−1607. doi: 10.12082/dqxxkx.2021.200579

    Wang L Y, Wang X N. Multi-value voxel connected region construction based on 3D plane extraction for airborne LIDAR data[J]. J Geo-Inf Sci, 2021, 23(9): 1598−1607. doi: 10.12082/dqxxkx.2021.200579

    [29]

    张蕊. 基于激光点云的复杂三维场景多态目标语义分割技术研究[D]. 郑州: 战略支援部队信息工程大学, 2018.

    Zhang R. Research on polymorphic object semantic segmentation of complex 3D scenes based on laser point clouds[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2018.

    [30]

    Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS J Photogramm Remote Sens, 2004, 59(1–2): 85−101. doi: 10.1016/j.isprsjprs.2004.05.004

  • 加载中

(7)

(1)

计量
  • 文章访问数:  3271
  • PDF下载数:  1185
  • 施引文献:  0
出版历程
收稿日期:  2022-09-30
修回日期:  2022-12-29
录用日期:  2023-01-11
刊出日期:  2023-02-25

目录

/

返回文章
返回