同偏振记录偏光全息的零再现

林阿愿,王瑾瑜,陈宇昕,等. 同偏振记录偏光全息的零再现[J]. 光电工程,2022,49(5): 210454. doi: 10.12086/oee.2022.210454
引用本文: 林阿愿,王瑾瑜,陈宇昕,等. 同偏振记录偏光全息的零再现[J]. 光电工程,2022,49(5): 210454. doi: 10.12086/oee.2022.210454
Lin A Y, Wang J Y, Chen Y X, et al. Null reconstruction of polarization holography recorded by the same polarized waves[J]. Opto-Electron Eng, 2022, 49(5): 210454. doi: 10.12086/oee.2022.210454
Citation: Lin A Y, Wang J Y, Chen Y X, et al. Null reconstruction of polarization holography recorded by the same polarized waves[J]. Opto-Electron Eng, 2022, 49(5): 210454. doi: 10.12086/oee.2022.210454

同偏振记录偏光全息的零再现

  • 基金项目:
    国家重点研发计划资助项目(2018YFA0701800);福建省科技重大专项资助项目(2020HZ01012)
详细信息
    作者简介:
    *通讯作者: 谭小地,xtan@fjnu.edu.cn
  • 中图分类号: O436

Null reconstruction of polarization holography recorded by the same polarized waves

  • Fund Project: National Key Research and Development Program of China (2018YFA0701800), and Project of Fujian Province Major Science and Technology (2020HZ01012).
More Information
  • 偏光全息中的零再现是指在读取光满足布拉格条件下,再现光的功率却为零的现象。在通常的强度全息中,则没有零再现现象。本文根据张量偏光全息理论预测出实现零再现的条件,并推导了同偏振记录偏光全息的再现光场实现零再现的条件。在实验中,先用两束椭圆偏振光并且干涉角度为136°来记录偏光全息;然后按照理论计算结果,改变参考光的偏振态成为一束特定偏振态,用这一束特定的偏振光进行读取,实现了零再现,验证了理论预测的正确性。

  • Overview: Nowadays, holography has been an important technology in interferometry, information storage and element manufacturing, etc. Holography may be divided into two types. One is the conventional holography, and the other is the polarization holography. The difference between these two types of holography is that the latter records not only the amplitude and phase but also the polarization state because the polarization holography uses polarization-sensitive materials. The recording material is not polarization-sensitive, only the same polarization component contained in both of them is good for the hologram when the signal and reference waves have different polarization states in the recording stage of conventional holography. It is believed that in conventional holography, once the Bragg condition is satisfied, the reconstructed wave can be generated regardless of the amplitude, phase, and polarization state of the reading wave. However, directed by the newly developed tensor polarization holography theory that was proposed in 2011, the reconstructed wave of the polarization holography recorded by the same polarization states may diminish as long as specific conditions are satisfied. The phenomenon is called null reconstruction.

    In this work, the light field of the reconstructed wave in polarization holography is derived, where the signal and reference waves of recording stage have the same polarization state. By the obtained expression of thte light field, the recording angle, i. e. the angle between the signal, and reference waves, should be obtuse to observe the null reconstruction. Thus, taking the property of the recording material into account, the polarization states of the signal, reference, reading waves, and recording angle are calculated. To get the universal result, the polarization states of all these waves are assumed to be elliptically polarized. Then the experiment is carried out to verify the theoretical result.

    In the experiment, the null reconstruction being achieved, the power of the reconstructed wave is lower than several micro watts, while that of ambient light is 45 nW. It seems the reconstructed wave does not diminish. Since the polarization state of the reading wave may affect the power of the reconstructed wave, the polarization state of reading wave will be changed to observe the variation of power of the reconstructed wave. The result shows that the power of the reconstructed wave gets the minimum when and only when the polarization state of the reading wave satisfies the null reconstruction. It confirms that the null reconstruction is obtained and the experimental result agrees well with the theoretical one.

    This work implies that the polarization holography can be applied in the fields such as polarization manipulation and information hiding.

  • 加载中
  • 图 1  非对称入射的偏光全息示意图。(a)记录阶段;(b)再现阶段

    Figure 1.  (a) Recording stage and (b) reconstructing stage of polarization holography with asymmetric incidence

    图 2  实验光路示意图。

    Figure 2.  Schematic diagram of experiment about null reconstruction.

    图 3  实验流程图

    Figure 3.  Experimental flow chart

    图 4  再现光的功率随曝光时间的增加而变化

    Figure 4.  Power of reconstructed wave varying with exposure time

    图 5  再现光的功率随HWP2方位角改变的变化情况

    Figure 5.  Power of reconstructed wave varying with azimuth of HWP2

    表 1  实验参数

    Table 1.  Experimental parameters

    α/βθ+θ-Signal waveReference waveReading wave
    867°69°1.12p+-is1.12p+-is1.47p-+is
    下载: 导出CSV

    表 2  波片快轴与水平方向的夹角

    Table 2.  Angle between fast axis and horizontal direction of wave plate

    Signal waveHWP3QWP2
    65.9°90°
    Reference wave HWP2QWP1
    20.9°90°
    Reading waveHWP2QWP1
    −17.2°90°
    下载: 导出CSV
  • [1]

    Zhang C L, Zhang D F, Bian Z P. Dynamic full-color digital holographic 3D display on single DMD[J]. Opto-Electron Adv, 2021, 4(3): 200049.

    [2]

    姜智翔, 桂进斌, 王国庆, 等. 用于三维显示的全息压缩技术概述[J]. 激光与光电子学进展, 2019, 56(24): 240001. doi: 10.3788/LOP56.240001

    Jiang Z X, Gui J B, Wang G Q, et al. Overview of holographic-compression technology for three- dimensional display[J]. Laser Optoelectron Prog, 2019, 56(24): 240001. doi: 10.3788/LOP56.240001

    [3]

    惠倩楠, 段存丽, 冯斌, 等. 采用长工作距离物镜的低噪声相移数字全息显微研究[J]. 光电工程, 2019, 46(12): 190140.

    Hui Q N, Duan C L, Feng B, et al. Study of low-noise phase-shifting digital holographic microscopy using a long working distance objective[J]. Opto-Electron Eng, 2019, 46(12): 190140.

    [4]

    林枭, 郝建颖, 郑明杰, 等. 光全息数据存储−新发展时机已至[J]. 光电工程, 2019, 46(3): 180642.

    Lin X, Hao J Y, Zheng M J, et al. Optical holographic data storage—The time for new development[J]. Opto-Electron Eng, 2019, 46(3): 180642.

    [5]

    Lin X, Liu J P, Hao J Y, et al. Collinear holographic data storage technologies[J]. Opto-Electron Adv, 2020, 3(3): 190004.

    [6]

    陆飞跃, 郑继红, 王康妮, 等. 聚合物分散液晶电控全息变间距光栅[J]. 光电工程, 2017, 44(3): 351−355.

    Lu F Y, Zheng J H, Wang K N, et al. Electrically controlled holographic varied line-spacing grating based on polymer dispersed liquid crystal[J]. Opto-Electron Eng, 2017, 44(3): 351−355.

    [7]

    Kakichashvili S D. Method for phase polarization recording of holograms[J]. Sov J Quantum Electron, 1974, 4(6): 795−798. doi: 10.1070/QE1974v004n06ABEH009334

    [8]

    Nikolova L, Todorov T. Diffraction efficiency and selectivity of polarization holographic recording[J]. Opt Acta Int J Opt, 1984, 31(5): 579−588. doi: 10.1080/713821547

    [9]

    Kuroda K, Matsuhashi Y, Fujimura R, et al. Theory of polarization holography[J]. Opt Rev, 2011, 18(5): 374−382. doi: 10.1007/s10043-011-0072-5

    [10]

    Wang J Y, Tan X D, Qi P L, et al. Linear polarization holography[J]. Opto-Electron Sci, 2022, 1(2): 210009. doi: 10.29026/oes.2022.210009

    [11]

    魏然, 臧金亮, 刘颖, 等. 应用于高密度存储的偏光全息技术研究进展[J]. 光电工程, 2019, 46(3): 180598.

    Wei R, Zang J L, Liu Y, et al. Review on polarization holography for high density storage[J]. Opto-Electron Eng, 2019, 46(3): 180598.

    [12]

    Xu X M, Zhang Y Y, Song H Y, et al. Generation of circular polarization with an arbitrarily polarized reading wave[J]. Opt Express, 2021, 29(2): 2613−2623. doi: 10.1364/OE.414531

    [13]

    Huang L, Zhang Y Y, Zhang Q, et al. Generation of a vector light field based on polarization holography[J]. Opt Letters, 2021, 46(18): 4542−4545. doi: 10.1364/OL.438070

    [14]

    Zheng S J, Liu H J, Lin A Y, et al. Scalar vortex beam produced through faithful reconstruction of polarization holography[J]. Opt Express, 2021, 29(26): 43193−43202. doi: 10.1364/OE.445360

    [15]

    Huang Z Y, He Y W, Dai T G, et al. Null reconstruction in orthogonal elliptical polarization holography read by non-orthogonal reference wave[J]. Opt Lasers Eng, 2020, 131: 106144. doi: 10.1016/j.optlaseng.2020.106144

    [16]

    Shao L, Zang J L, Fan F L, et al. Investigation of the null reconstruction effect of an orthogonal elliptical polarization hologram at a large recording angle[J]. Appl Opt, 2019, 58(36): 9983−9989. doi: 10.1364/AO.58.009983

    [17]

    Lin S H, Lin J H, Chen P L, et al. Doped poly (methyl methacrylate) photopolymers for holographic data storage[J]. J Nonlinear Opt Phys Mater, 2006, 15(2): 239−252. doi: 10.1142/S0218863506003244

    [18]

    Liu Y, Li Z Z, Zang J L, et al. The optical polarization properties of phenanthrenequinone-doped Poly (methyl methacrylate) photopolymer materials for volume holographic storage[J]. Opt Rev, 2015, 22(5): 837−840. doi: 10.1007/s10043-015-0108-3

    [19]

    Wang J Y, Qi P L, Lin A Y, et al. Exposure response coefficient of polarization-sensitive media using tensor theory of polarization holography[J]. Opt Lett, 2021, 46(19): 4789−4792. doi: 10.1364/OL.431637

    [20]

    Todorov T, Nikolova L, Tomova N. Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence[J]. Appl Opt, 1984, 23(23): 4309−4312. doi: 10.1364/AO.23.004309

    [21]

    Todorov T, Nikolova L, Tomova N. Polarization holography. 2: polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence[J]. Appl Opt, 1984, 23(24): 4588−4591. doi: 10.1364/AO.23.004588

  • 加载中

(6)

(2)

计量
  • 文章访问数:  3507
  • PDF下载数:  589
  • 施引文献:  0
出版历程
收稿日期:  2022-01-22
修回日期:  2022-02-26
刊出日期:  2022-05-25

目录

/

返回文章
返回