仿生超滑表面的飞秒激光微纳制造及应用

杨青,成扬,方政,等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程,2022,49(1): 210326. doi: 10.12086/oee.2022.210326
引用本文: 杨青,成扬,方政,等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程,2022,49(1): 210326. doi: 10.12086/oee.2022.210326
Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326
Citation: Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326

仿生超滑表面的飞秒激光微纳制造及应用

  • 基金项目:
    国家自然科学基金资助项目(62175195,61875158);国家重点研发计划项目(2017YFB1104700);中央高校基本科研业务费资助项目
详细信息
    作者简介:
    *通讯作者: 陈烽,chenfeng@mail.xjtu.edu.cn
  • 中图分类号: TN249

The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-nano manufacturing

  • Fund Project: National Natural Science Foundation of China (62175195, 61875158), National Key Research and Development Program of China ( 2017YFB1104700), and Fundamental Research Funds for the Central Universities
More Information
  • 仿猪笼草的超滑表面由于可以抵抗多种液体的粘附,具有优异的稳定性与自修复性,受到越来越广泛的关注。而飞秒激光由于其对加工材料的普适性、高精度,以及高可控性,成为仿生超滑表面制备的有力手段。本文以仿猪笼草的超滑表面为背景,以飞秒激光微加工技术为手段。从超滑表面的飞秒激光微纳制备和应用两个方面,概述了超滑表面的微纳制造和应用。针对不同材料,通过对飞秒激光进行调控,实现了在聚合物、硬脆透明材料,以及金属上的超滑表面制备。制备的超滑表面可应用于液滴、气泡操控、生物抗凝、防污和防腐等领域。最后总结超滑表面所面临的挑战。

  • Overview: Nepenthes pitcher plant is a tropical insectivorous plant which is able to trap and digest insects. This unique property is mainly due to the rich micro/nano porous structures on the surfaces filled with a layer of lubricating, thus forming a slippery liquid-infused porous surface (SLIPS). When the insects stand on the mouth of pitch plant, they can easily fall into the pitcher because its inner surface is too smooth and thus digested by the digestive juices. Due to the mechanism of liquid-liquid contact between the lubricant and repelled object, SLIPS shows high stability and versatile liquid-repellency compared with superhydrophobic surfaces inspired by lotus leaves. Due to the fluidity of the lubricant, it can timely flow to the surface defects caused by external force and help recover the favorable slippery property. These excellent liquid repellency, stability and self-healing properties of SLIPS have attracted wide attentions from researchers, who carried out a large number of related studies. Methods to prepare SLIPS are mostly based on the three parts: fabrication of micro/nano-structures, low surface energy treatment and lubricant infusion. The fabrication of rough structure is the essential part during the process. Femtosecond laser has the ultra-short pulse width and ultra-high peak power, so it can process the majority of materials with high processing accuracy and strong controllability. Therefore, femtosecond laser has become a powerful tool for preparing the micro/nano-structure on the SLIPS. In addition, the femtosecond laser processing is directly performed on the material for subtractive manufacturing. It shows more stability compared with chemical treatment. In this paper, we focus on the preparation of SLIPS on different materials by femtosecond laser, including polymers, hard and brittle transparent materials, and metals. Then, the application of SLIPS is summarized in the fields of droplet bubble manipulation, biological anticoagulation, anti-fouling, and corrosion prevention. Finally, challenges of slippery surfaces were summarized.

  • 加载中
  • 图 1  猪笼草的表面结构及其超滑性能。

    Figure 1.  The surface structure and slippery property of Nepenthes.

    图 2  飞秒激光在各种材料表面的微纳加工。

    Figure 2.  The micro-nano manufacturing of femtosecond laser on all kinds of materials.

    图 3  飞秒激光的高精度微纳加工。

    Figure 3.  The high precision machining of femtosecond laser.

    图 4  飞秒激光在微纳加工领域的高可控性。

    Figure 4.  The high controllability of femtosecond laser on micro-nano manufacturing field.

    图 5  飞秒激光在PA6表面上的超滑表面制备及超滑表面的稳定性测试[50]

    Figure 5.  The femtosecond laser fabricates the slippery surface on PA6 and the stability testing[50].

    图 6  图案化的超滑表面以及各向异性超滑表面。

    Figure 6.  The patterned slippery surface and anisotropic slippery surface.

    图 7  飞秒激光和湿法刻蚀相结合在玻璃表面制备透明超滑 [54]

    Figure 7.  The fabrication of transparent slippery surface on glass via femtosecond laser patterning and wet etching [54].

    图 8  飞秒激光在金属上的超滑表面制备。

    Figure 8.  The slippery surface fabricated by femtosecond laser on metal.

    图 9  飞秒贝塞尔光在镍钛合金上的超滑表面制备[58]

    Figure 9.  The fabrication of slippery surface on NiTi alloy by femtosecond laser[58].

    图 10  超滑表面在液滴操控方面的应用。

    Figure 10.  Applications of slippery surface in droplet manipulation.

    图 11  电压控制的超滑表面用于液滴的定向运动和钉扎[72]

    Figure 11.  Voltage reversibly control liquids on slippery surface between sliding and pining[72].

    图 12  飞秒激光在钛片上构建的不同结构以及生物膜在钛超滑表面上的粘附情况[85]

    Figure 12.  Femtosecond laser construct different structures on titanium and the adhesion of biofilm on slippery surface[85].

    图 13  在内窥镜表面制备超滑用于防污、抗雾[86]

    Figure 13.  Lubricant infused directly engraved nano microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties[86].

    图 14  镍钛合金超滑表面的血液相容性[58]

    Figure 14.  The hemocompatibility of NiTi alloy slippery surface[58].

    图 15  超滑表面在食品防污方面的应用。

    Figure 15.  Application of slippery surface in food antifouling.

    图 16  不同样品的表面形貌和极化曲线[93]

    Figure 16.  Surface morphology and polarization curves of different samples[93].

    表 1  激光在不同材料上制备超滑表面概述

    Table 1.  Overview of SLIPS on different materials by laser processing

    材料 聚合物 硬脆透明材料 金属
    方法 激光直写 激光直写;飞秒激光+湿法刻蚀 短脉冲激光脉冲整形;飞秒激光+酒精辅助
    应用 液滴阵列化;液滴、气泡运输;
    食品包装防污
    透明防污窗口;光学传感;
    生物镜头自清洁
    海洋、食品防污;海洋减阻;
    生物抗凝;防腐 防冰
    参考文献 12, 50, 51, 52, 53, 71, 72 54, 86 59, 60, 58, 85, 92, 93
    下载: 导出CSV
  • [1]

    Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443−447. doi: 10.1038/nature10447

    [2]

    Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85−89. doi: 10.1038/nature17189

    [3]

    Li J S, Ueda E, Paulssen D, et al. Slippery lubricant-infused surfaces: properties and emerging applications[J]. Adv Funct Mater, 2019, 29(4): 1802317. doi: 10.1002/adfm.201802317

    [4]

    Zhao X, Wei J F, Li B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. J Colloid Interface Sci, 2020, 575: 140−149. doi: 10.1016/j.jcis.2020.04.097

    [5]

    Zhao H X, Sun Q Q, Deng X, et al. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces[J]. Adv Mater, 2018, 30(29): 1802141. doi: 10.1002/adma.201802141

    [6]

    Xiao X, Zhang C H, Ma H Y, et al. Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment[J]. ACS Nano, 2019, 13(4): 4083−4090. doi: 10.1021/acsnano.8b08480

    [7]

    Wei D S, Wang J G, Li S Y, et al. Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy[J]. Chem Eng J, 2021, 425: 130450. doi: 10.1016/j.cej.2021.130450

    [8]

    Wang H J, Zhang Z H, Wang Z K, et al. Improved dynamic stability of superomniphobic surfaces and droplet transport on slippery surfaces by dual-scale re-entrant structures[J]. Chem Eng J, 2020, 394: 124871. doi: 10.1016/j.cej.2020.124871

    [9]

    Liu W J, Pan R, Cai M Y, et al. Oil-triggered switchable wettability on patterned alternating air/lubricant-infused superamphiphobic surfaces[J]. J Mater Chem A, 2020, 8(14): 6647−6660. doi: 10.1039/C9TA14116B

    [10]

    Leslie D C, Waterhouse A, Berthet J B, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling[J]. Nat Biotechnol, 2014, 32(11): 1134−1140. doi: 10.1038/nbt.3020

    [11]

    Badv M, Imani S M, Weitz J I, et al. Lubricant-infused surfaces with built-in functional biomolecules exhibit simultaneous repellency and tunable cell adhesion[J]. ACS Nano, 2018, 12(11): 10890−10902. doi: 10.1021/acsnano.8b03938

    [12]

    Fang Y, Liang J, Bai X, et al. Magnetically controllable isotropic/anisotropic slippery surface for flexible droplet manipulation[J]. Langmuir, 2020, 36(50): 15403−15409. doi: 10.1021/acs.langmuir.0c03008

    [13]

    Yang J, Li J Y, Jia X H, et al. Fabrication of robust and transparent slippery coating with hot water repellency, antifouling property, and corrosion resistance[J]. ACS Appl Mater Interfaces, 2020, 12(25): 28645−28654. doi: 10.1021/acsami.0c06743

    [14]

    Yang S K, Dai X M, Stogin B B, et al. Ultrasensitive surface-enhanced raman scattering detection in common fluids[J]. Proc Natl Acad Sci USA, 2016, 113(2): 268−273. doi: 10.1073/pnas.1518980113

    [15]

    Deng R, Shen T, Chen H L, et al. Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?[J]. J Mater Chem A, 2020, 8(16): 7536−7547. doi: 10.1039/D0TA02000A

    [16]

    Zeng X, Guo Z G, Liu W M. Recent advances in slippery liquid-infused surfaces with unique properties inspired by nature[J]. Bio-Des Manuf, 2021, 4(3): 506−525. doi: 10.1007/s42242-021-00133-8

    [17]

    Zhang P F, Liu G, Zhang D Y, et al. Liquid-infused surfaces on electrosurgical instruments with exceptional antiadhesion and low-damage performances[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33713−33720. doi: 10.1021/acsami.8b13373

    [18]

    Chen Y, Guo Z G. An ionic liquid-infused slippery surface for temperature stability, shear resistance and corrosion resistance[J]. J Mater Chem A, 2020, 8(45): 24075−24085. doi: 10.1039/D0TA08717C

    [19]

    Liang Y Z, Wang P, Zhang D. Designing a highly stable slippery organogel on Q235 carbon steel for inhibiting microbiologically influenced corrosion[J]. ACS Appl Bio Mater, 2021, 4(8): 6056−6064. doi: 10.1021/acsabm.1c00357

    [20]

    Anand S, Paxson A T, Dhiman R, et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces[J]. ACS Nano, 2012, 6(11): 10122−10129. doi: 10.1021/nn303867y

    [21]

    Jiang D, Xia X C, Hou J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy[J]. Chem Eng J, 2019, 373: 285−297. doi: 10.1016/j.cej.2019.05.046

    [22]

    Li H, Feng X L, Peng Y J, et al. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability[J]. Nanoscale, 2020, 12(14): 7700−7711. doi: 10.1039/C9NR10699E

    [23]

    Song F, Wu C Q, Chen H L, et al. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces[J]. RSC Adv, 2017, 7(70): 44239−44246. doi: 10.1039/C7RA04816E

    [24]

    Lee J, Jiang Y H, Hizal F, et al. Durable omniphobicity of oil-impregnated anodic aluminum oxide nanostructured surfaces[J]. J Colloid Interface Sci, 2019, 553: 734−745. doi: 10.1016/j.jcis.2019.06.068

    [25]

    Sun J, Wang C, Song J L, et al. Multi-functional application of oil-infused slippery al surface: from anti-icing to corrosion resistance[J]. J Mater Sci, 2018, 53(23): 16099−16109. doi: 10.1007/s10853-018-2760-z

    [26]

    Geraldi N R, Guan J H, Dodd L E, et al. Double-sided slippery liquid-infused porous materials using conformable mesh[J]. Sci Rep, 2019, 9(1): 13280. doi: 10.1038/s41598-019-49887-3

    [27]

    Zhang M L, Chen R R, Liu Q, et al. Long-term stability of a liquid-infused coating with anti-corrosion and anti-icing potentials on al alloy[J]. ChemElectroChem, 2019, 6(15): 3911−3919. doi: 10.1002/celc.201900302

    [28]

    Yong J L, Chen F, Yang Q, et al. Rapid fabrication of large-area concave microlens arrays on pdms by a femtosecond laser[J]. ACS Appl Mater Interfaces, 2013, 5(19): 9382−9385. doi: 10.1021/am402923t

    [29]

    Cheng Y, Yang Q, Fang Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Adv Mater Interfaces, 2019, 6(10): 1900067. doi: 10.1002/admi.201900067

    [30]

    Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Appl Phys Rev, 2014, 1(4): 041303. doi: 10.1063/1.4904320

    [31]

    Kodama N, Takahashi T, Inoue T, et al. Morphological characteristics of nanoholes induced by single-shot femtosecond laser ablation of borates and aluminate silicates[J]. J Laser Appl, 2020, 32(1): 012015. doi: 10.2351/1.5130696

    [32]

    Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing[J]. Opto-Electron Adv, 2020, 3(5): 190035. doi: 10.29026/oea.2020.190035

    [33]

    Zhou Y, Chen L W, Du Z R, et al. Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix[J]. Opt Mater Express, 2015, 5(7): 1606−1612. doi: 10.1364/OME.5.001606

    [34]

    Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nat Photonics, 2008, 2(4): 219−225. doi: 10.1038/nphoton.2008.47

    [35]

    Chen L W, Yin Y M, Li Y, et al. Multifunctional inverse sensing by spatial distribution characterization of scattering photons[J]. Opto-Electron Adv, 2019, 2(9): 190019. doi: 10.29026/oea.2019.190019

    [36]

    Yong J L, Zhan Z B, Singh S C, et al. Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J]. ACS Appl Polym Mater, 2019, 1(11): 2819−2825. doi: 10.1021/acsapm.9b00269

    [37]

    Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Appl Phys Lett, 2008, 92(4): 041914. doi: 10.1063/1.2834902

    [38]

    Deng Z F, Chen F, Yang Q, et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Adv Funct Mater, 2016, 26(12): 1995−2001. doi: 10.1002/adfm.201504941

    [39]

    Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nat Mater, 2002, 1(4): 217−224. doi: 10.1038/nmat767

    [40]

    Momma C, Nolte S, Chichkov B N, et al. Precise laser ablation with ultrashort pulses[J]. Appl Surf Sci, 1997, 109–110: 15−19. doi: 10.1016/S0169-4332(96)00613-7

    [41]

    Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices - micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001, 412(6848): 697−698.

    [42]

    Lin Z Y, Liu H G, Ji L F, et al. Realization of ∼10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air[J]. Nano Lett, 2020, 20(7): 4947−4952. doi: 10.1021/acs.nanolett.0c01013

    [43]

    Kontenis G, Gailevičius D, Jonušauskas L, et al. Dynamic aberration correction via spatial light modulator (SLM) for femtosecond direct laser writing: towards spherical voxels[J]. Opt Express, 2020, 28(19): 27850−27864. doi: 10.1364/OE.397006

    [44]

    Pavlov D, Porfirev A, Khonina S, et al. Coaxial hole array fabricated by ultrafast femtosecond-laser processing with spatially multiplexed vortex beams for surface enhanced infrared absorption[J]. Appl Surf Sci, 2021, 541: 148602. doi: 10.1016/j.apsusc.2020.148602

    [45]

    Yalizay B, Ersoy T, Soylu B, et al. Fabrication of nanometer-size structures in metal thin films using femtosecond laser bessel beams[J]. Appl Phys Lett, 2012, 100(3): 031104. doi: 10.1063/1.3678030

    [46]

    Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008

    [47]

    Su Y L, Zhao Y Z, Jiang S Y, et al. Anisotropic superhydrophobic properties of bioinspired surfaces by laser ablation of metal substrate inside water[J]. Adv Mater Interfaces, 2021, 8(16): 2100555. doi: 10.1002/admi.202100555

    [48]

    Bian H, Shan C, Liu K Y, et al. A miniaturized rogowski current transducer with wide bandwidth and fast response[J]. J Micromech Microeng, 2016, 26(11): 115015. doi: 10.1088/0960-1317/26/11/115015

    [49]

    Zou T T, Zhao B, Xin W, et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light Sci Appl, 2020, 9: 69. doi: 10.1038/s41377-020-0311-2

    [50]

    Yong J L, Chen F, Yang Q, et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Adv Mater Interfaces, 2017, 4(20): 1700552. doi: 10.1002/admi.201700552

    [51]

    Yong J L, Huo J L, Yang Q, et al. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Adv Mater Interfaces, 2018, 5(7): 1701479. doi: 10.1002/admi.201701479

    [52]

    Liang J, Bian H, Yang Q, et al. Femtosecond laser-patterned slippery surfaces on PET for liquid patterning and blood resistance[J]. Opt Laser Technol, 2020, 132: 106469. doi: 10.1016/j.optlastec.2020.106469

    [53]

    Lv X D, Jiao Y L, Wu S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Appl Mater Interfaces, 2019, 11(22): 20574−20580. doi: 10.1021/acsami.9b06849

    [54]

    Deng C, Ki H. Tunable wetting surfaces with interacting cavities via femtosecond laser patterning and wet etching[J]. J Appl Phys, 2020, 128(1): 015306. doi: 10.1063/5.0011885

    [55]

    Gopal V, Manivasagam G. Wear - corrosion synergistic effect on Ti–6Al–4V alloy in H2O2 and albumin environment[J]. J Alloys Compd, 2020, 830: 154539. doi: 10.1016/j.jallcom.2020.154539

    [56]

    Sharma A, Oh M C, Kim J T, et al. Investigation of electrochemical corrosion behavior of additive manufactured Ti–6Al–4V alloy for medical implants in different electrolytes[J]. J Alloys Compd, 2020, 830: 154620. doi: 10.1016/j.jallcom.2020.154620

    [57]

    Zhang Z, Wu X Q, Tan J B. In-situ monitoring of stress corrosion cracking of 304 stainless steel in high-temperature water by analyzing acoustic emission waveform[J]. Corros Sci, 2019, 146: 90−98. doi: 10.1016/j.corsci.2018.10.022

    [58]

    Cheng Y, Yang Q, Lu Y, et al. A femtosecond bessel laser for preparing a nontoxic slippery liquid-infused porous surface (slips) for improving the hemocompatibility of NiTi alloys[J]. Biomater Sci, 2020, 8(23): 6505−6514. doi: 10.1039/D0BM01369B

    [59]

    Karkantonis T, Gaddam A, See T L, et al. Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications[J]. Surf Coat Technol, 2020, 399: 126166. doi: 10.1016/j.surfcoat.2020.126166

    [60]

    Fang Y, Yong J L, Cheng Y, et al. Liquid-infused slippery stainless steel surface prepared by alcohol-assisted femtosecond laser ablation[J]. Adv Mater Interfaces, 2021, 8(5): 2001334. doi: 10.1002/admi.202001334

    [61]

    Jiang J K, Gao J, Zhang H D, et al. Directional pumping of water and oil microdroplets on slippery surface[J]. Proc Natl Acad Sci USA, 2019, 116(7): 2482−2487. doi: 10.1073/pnas.1817172116

    [62]

    Tenjimbayashi M, Nishioka S, Kobayashi Y, et al. A lubricant-sandwiched coating with long-term stable anticorrosion performance[J]. Langmuir, 2018, 34(4): 1386−1393. doi: 10.1021/acs.langmuir.7b03913

    [63]

    Urata C, Nagashima H, Hatton B D, et al. Transparent organogel films showing extremely efficient and durable anti-icing performance[J]. ACS Appl Mater Interfaces, 2021, 13(24): 28925−28937. doi: 10.1021/acsami.1c06815

    [64]

    Ware C S, Smith-Palmer T, Peppou-Chapman S, et al. Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces[J]. ACS Appl Mater Interfaces, 2018, 10(4): 4173−4182. doi: 10.1021/acsami.7b14736

    [65]

    Wu D Q, Ma L W, Zhang F, et al. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property[J]. Mater Des, 2020, 185: 108236. doi: 10.1016/j.matdes.2019.108236

    [66]

    Yao X, Dunn S S, Kim P, et al. Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties[J]. Angew Chem Int Ed, 2014, 53(17): 4418−4422. doi: 10.1002/anie.201310385

    [67]

    Movafaghi S, Wang W, Bark D L, et al. Hemocompatibility of super-repellent surfaces: current and future[J]. Mater Horiz, 2019, 6(8): 1596−1610. doi: 10.1039/C9MH00051H

    [68]

    Sun L Y, Bian F K, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proc Natl Acad Sci USA, 2020, 117(9): 4527−4532. doi: 10.1073/pnas.1921281117

    [69]

    Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nat Mater, 2019, 18(9): 936−941. doi: 10.1038/s41563-019-0440-2

    [70]

    Huang S L, Li J, Liu L, et al. Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue[J]. Adv Mater, 2019, 31(27): 1901417. doi: 10.1002/adma.201901417

    [71]

    Fang J H, Zhang Y B, Xiao L, et al. Self-propelled and electrobraking synergetic liquid manipulator toward microsampling and bioanalysis[J]. ACS Appl Mater Interfaces, 2021, 13(12): 14741−14751. doi: 10.1021/acsami.1c01494

    [72]

    Chen C, Huang Z C, Jiao Y L, et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage[J]. ACS Nano, 2019, 13(5): 5742−5752. doi: 10.1021/acsnano.9b01180

    [73]

    Chauhan A, Bernardin A, Mussard W, et al. Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters[J]. J Infect Dis, 2014, 210(9): 1347−1356. doi: 10.1093/infdis/jiu249

    [74]

    Chen G Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials[J]. Biomaterials, 2005, 26(33): 6565−6578. doi: 10.1016/j.biomaterials.2005.04.036

    [75]

    Huang N, Yang P, Leng Y X, et al. Hemocompatibility of titanium oxide films[J]. Biomaterials, 2003, 24(13): 2177−2187. doi: 10.1016/S0142-9612(03)00046-2

    [76]

    Sun T L, Tan H, Han D, et al. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small, 2005, 1(10): 959−963. doi: 10.1002/smll.200500095

    [77]

    Fan H L, Chen P P, Qi R M, et al. Greatly improved blood compatibility by microscopic multiscale design of surface architectures[J]. Small, 2009, 5(19): 2144−2148. doi: 10.1002/smll.200900345

    [78]

    Daniello R J, Waterhouse N E, Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Phys Fluids, 2009, 21(8): 085103. doi: 10.1063/1.3207885

    [79]

    He W Q, Liu P, Zhang J Q, et al. Emerging applications of bioinspired slippery surfaces in biomedical fields[J]. Chem Eur J, 2018, 24(56): 14864−14877. doi: 10.1002/chem.201801368

    [80]

    Li X Y, Gao P, Tan J Y, et al. Assembly of metal–phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings[J]. ACS Appl Mater Interfaces, 2018, 10(47): 40844−40853. doi: 10.1021/acsami.8b14409

    [81]

    Manabe K, Kyung K H, Shiratori S. Biocompatible slippery fluid-infused films composed of chitosan and alginate via layer-by-layer self-assembly and their antithrombogenicity[J]. ACS Appl Mater Interfaces, 2015, 7(8): 4763−4771. doi: 10.1021/am508393n

    [82]

    Moradi S, Hadjesfandiari N, Toosi S F, et al. Effect of extreme wettability on platelet adhesion on metallic implants: from superhydrophilicity to superhydrophobicity[J]. ACS Appl Mater Interfaces, 2016, 8(27): 17631−17641. doi: 10.1021/acsami.6b03644

    [83]

    Villegas M, Zhang Y X, Abu Jarad N, et al. Liquid-infused surfaces: a review of theory, design, and applications[J]. ACS Nano, 2019, 13(8): 8517−8536. doi: 10.1021/acsnano.9b04129

    [84]

    Yuan S S, Luan S F, Yan S J, et al. Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection[J]. ACS Appl Mater Interfaces, 2015, 7(34): 19466−19473. doi: 10.1021/acsami.5b05865

    [85]

    Doll K, Fadeeva E, Schaeske J, et al. Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9359−9368. doi: 10.1021/acsami.6b16159

    [86]

    Lee Y, Chung Y W, Park J, et al. Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties[J]. Sci Rep, 2020, 10(1): 17454. doi: 10.1038/s41598-020-74517-8

    [87]

    Liu X W, Wang L Q, Qiao Y F, et al. Adhesion of liquid food to packaging surfaces: mechanisms, test methods, influencing factors and anti-adhesion methods[J]. J Food Eng, 2018, 228: 102−117. doi: 10.1016/j.jfoodeng.2018.02.002

    [88]

    Schaider L A, Balan S A, Blum A, et al. Fluorinated compounds in U. S. fast food packaging[J]. Environ Sci Technol Lett, 2017, 4(3): 105−111. doi: 10.1021/acs.estlett.6b00435

    [89]

    Williams H, Lindström A, Trischler J, et al. Avoiding food becoming waste in households – the role of packaging in consumers' practices across different food categories[J]. J. Clean Prod, 2020, 265: 121775. doi: 10.1016/j.jclepro.2020.121775

    [90]

    Williams H, Wikström F, Otterbring T, et al. Reasons for household food waste with special attention to packaging[J]. J Clean Prod, 2012, 24: 141−148. doi: 10.1016/j.jclepro.2011.11.044

    [91]

    Wohner B, Pauer E, Heinrich V, et al. Packaging-related food losses and waste: an overview of drivers and issues[J]. Sustainability, 2019, 11(1): 264. doi: 10.3390/su11010264

    [92]

    Zouaghi S, Six T, Bellayer S, et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing[J]. ACS Appl Mater Interfaces, 2017, 9(31): 26565−26573. doi: 10.1021/acsami.7b06709

    [93]

    Qin Y K, Li Y, Zhang D, et al. Wettability, durability and corrosion properties of slippery laser-textured aluminum alloy surface under water impact[J]. Surf Coat Technol, 2020, 394: 125856. doi: 10.1016/j.surfcoat.2020.125856

    [94]

    Zhang G Y, Liang B, Zhong Z X, et al. One-step solvent-free strategy for covalently attached, substrate-independent transparent slippery coating[J]. Adv Mater Interfaces, 2018, 5(20): 1800646. doi: 10.1002/admi.201800646

    [95]

    Zhong X M, Hu H F, Yang L, et al. Robust hyperbranched polyester-based anti-smudge coatings for self-cleaning, anti-graffiti, and chemical shielding[J]. ACS Appl Mater Interfaces, 2019, 11(15): 14305−14312. doi: 10.1021/acsami.8b22447

    [96]

    Lei L, Buddingh J, Wang J D, et al. Transparent omniphobic polyurethane coatings containing partially acetylated β–cyclodextrin as the polyol[J]. Chem Eng J, 2020, 380: 122554. doi: 10.1016/j.cej.2019.122554

  • 加载中

(17)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-10-09
修回日期:  2021-11-05
刊出日期:  2022-01-25

目录

/

返回文章
返回