有成像潜力的聚酰亚胺薄膜的制备方法

吕刚,杨伟,毛丹波,等. 有成像潜力的聚酰亚胺薄膜的制备方法[J]. 光电工程,2021,48(4):200381. doi: 10.12086/oee.2021.200381
引用本文: 吕刚,杨伟,毛丹波,等. 有成像潜力的聚酰亚胺薄膜的制备方法[J]. 光电工程,2021,48(4):200381. doi: 10.12086/oee.2021.200381
Lv G, Yang W, Mao D B, et al. Preparation method for polyimide films with imaging potential[J]. Opto-Electron Eng, 2021, 48(4): 200381. doi: 10.12086/oee.2021.200381
Citation: Lv G, Yang W, Mao D B, et al. Preparation method for polyimide films with imaging potential[J]. Opto-Electron Eng, 2021, 48(4): 200381. doi: 10.12086/oee.2021.200381

有成像潜力的聚酰亚胺薄膜的制备方法

  • 基金项目:
    国家重点研发计划地球观测与导航重点专项(2016YFB0500200)
详细信息
    作者简介:
    *通讯作者: 杨伟(1979-),男,博士,副研究员,主要从事薄膜光学成像系统关键检测技术的研究。E-mail:ywei@ioe.ac.cn
  • 中图分类号: TB383

Preparation method for polyimide films with imaging potential

  • Fund Project: the National Key R&D Program of the Ministry of Science and Technology of the People's Epublic of China (2016YF0500200)
More Information
  • 聚酰亚胺(PI)薄膜因具有优良的热稳定性、良好的机械强度等性能广泛应用于航空航天、微电子等领域,但应用在光学成像方向的报道极少。要将PI薄膜用于成像,对其本身的光学均匀性要求极为苛刻。本文实现了100 mm口径低热膨胀系数抗拉伸PI薄膜的光学均匀性满足瑞利判据,具有了成像领域应用的潜力。除了光学均匀性之外,该PI的拉伸强度为285 MPa,是PMDA-ODA型PI拉伸强度的~2.6倍;热膨胀系数约为3.2 ppm·K-1,可以与Novastrat®905相媲美,比商品化PI薄膜低一个数量级。这些优良的基础性能为进一步改进PI薄膜的空间适应性预留了更大的空间。PI光学均匀性的解决将为其在薄膜衍射光学元件中的应用奠定基础。

  • Overview: Diffractive optical element (DOE) is an important part of the large aperture spatial diffractive optical system. Materials of DOE with the characteristics of high optical transmittance, satisfactory optical homogeneity, and good dimensional stability are urgently required. As a kind of engineering polymer with high performance, polyimides (PIs) are widely used in the aerospace field, owing to their inherent good mechanical properties, resistance to chemicals, desirable dielectric permittivity, and high-temperature stability. However, the preparation of PI films on the market mostly adopts a biaxial stretching forming process, which is equivalent to pre-orienting the film and will introduce errors in beam control. In order to obtain PI with optical homogeneity, it is necessary to improve the existing preparation process. Nevertheless, there are few reports on the improvement of film forming process for optical imaging application. The forming process parameters of the optical imaging quality films: viscosity, rotation speed, spin coating time and precuring temperature are 105 p, 900 rpm, 120 s and 70 ℃, respectively. According to the film-forming process parameters, the optical homogeneity results of PI film with 100 mm aperture are obtained: PV≤1/4λ and RMS≤1/20λ. Moreover, the process has good stability, therefore, we can stably prepare PI film with large aperture (100 mm) which meet the Rayleigh criterion, which is the basis of the subsequent preparation of Fresnel film lens. The characteristic peak at 1366 cm-1 is due to the peak in amide bond. At 2900 cm-1~3200 cm-1, the broad absorption peaks of - COOH group and - NH group corresponding to the polyamic acid disappear, indicating that the polyimide film has been completely imidized. The temperature Td of 5% is 582 ℃. The carbon yield of the BPDA-DABA type PI at 800 ℃ is about 62.7%. The glass transition temperature Tg of BPDA-DABA PI is 359 ℃. The thermal expansion coefficient of PI film is about 3.2 ppm·K-1, which makes the deformation of PI film itself under the condition of temperature change have the lowest influence on the beam control. It can basically meet the requirements of optical PI for dimensional stability. The tensile strength of the BPDA-DABA type PI is ~285 MPa due to the hydrogen bond between molecular chains. The transparency of both the BPDA-DABA PI and PMDA-ODA PI films are more than 80% at 550 nm. In summary, BPDA-DABA PI has excellent mechanical strength and good thermal properties, and these basic indices can meet the design requirements of optical PI film. In this paper, the spin coating method is used to solve the problem that the low thermal expansion coefficient tensile PI film with 100 mm aperture meets Rayleigh criterion, which lays the foundation for solving the optical homogeneity of diffractive optical elements on the ground or in the synchronous orbit environment.

  • 加载中
  • 图 1  PI薄膜合成路线图

    Figure 1.  Synthetic route of PI film

    图 2  PI薄膜FTIR曲线

    Figure 2.  Infrared spectrum of PI film

    图 3  PI薄膜的TGA曲线 (注:PMDA-ODA PI的对比数据来自参考文献[18])

    Figure 3.  TGA curve of PI film

    图 4  PI薄膜的tanδ曲线

    Figure 4.  tanδ curve of PI film

    图 5  两种不同类型的PI薄膜的拉伸强度与断裂伸长率对比图

    Figure 5.  Comparison of tensile strength and elongation at break of two different types of PI films

    图 6  PI薄膜透过率对比曲线

    Figure 6.  Transmittance curves of PI films

    图 7  PI膜的光学均匀性

    Figure 7.  Optical homogeneity of PI films

    表 1  聚酰亚胺薄膜的热性能

    Table 1.  Thermal properties of polyimide films

    Sample DMA TMA TGA
    tanδ a Tg/(℃) b CTE/(ppm·K-1) c Td in N2/(℃) d Carbon yield/(%) e
    PI 0.1591 359 3.2 582 62.7
    下载: 导出CSV

    表 2  聚酰亚胺薄膜的力学性能

    Table 2.  Mechanical properties of polyimide films

    样品 拉伸强度/MPa 断裂伸长率/(%)
    PMDA-ODA 108±6 20±2.5
    BPDA-DABA 285±25 9.3±0.7
    下载: 导出CSV
  • [1]

    Hyde R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Appl Opt, 1999, 38(19): 4198–4212. doi: 10.1364/AO.38.004198

    [2]

    Barton I M, Britten J A, Dixit S N, et al. Fabrication of large-aperture lightweight diffractive lenses for use in space[J]. Appl Opt, 2001, 40(4): 447–541. doi: 10.1364/AO.40.000447

    [3]

    Meinel A B, Meinel M P. Large membrane space optics: imagery and aberrations of diffractive and holographic achromatized optical elements of high diffraction order[J]. Opt Eng, 2002, 41(8): 1995–2007. doi: 10.1117/1.1487364

    [4]

    Atcheson P D, Stewart C, Domber J, et al. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. Proc SPIE, 2012, 8442: 844221. doi: 10.1117/12.925413

    [5]

    Mao D, Lv G, Gao G H, et al. Fabrication of polyimide films with imaging quality using a spin-coating method for potential optical applications[J]. J Polym Eng, 2019, 39(10): 917–925. doi: 10.1515/polyeng-2019-0177

    [6]

    谭昭, 吴时彬, 杨伟, 等. 圆形薄膜预应力测量[J]. 工程塑料应用, 2020, 48(3): 109–114. doi: 10.3969/j.issn.1001-3539.2020.03.019

    Tan Z, Wu S B, Yang W, et al. Measurement of circular membrane prestress[J]. Eng Plastics Appl, 2020, 48(3): 109–114. doi: 10.3969/j.issn.1001-3539.2020.03.019

    [7]

    罗倩, 吴时彬, 汪利华, 等. 拼接检测系统平面波前稀疏子孔径排列模型的优化[J]. 光电工程, 2018, 45(5): 170638. doi: 10.12086/oee.2018.170638

    Luo Q, Wu S B, Wang L H, et al. Optimization of sparse subaperture array model for stitching detection of plane wavefront[J]. Opto-Electron Eng, 2018, 45(5): 170638. doi: 10.12086/oee.2018.170638

    [8]

    杨伟, 吴时彬, 汪利华, 等. 微结构薄膜望远镜研究进展分析[J]. 光电工程, 2017, 44(5): 475–482. doi: 10.3969/j.issn.1003-501X.2017.05.001

    Yang W, Wu S B, Wang L H, et al. Research advances and key technologies of macrostructure membrane telescope[J]. Opto-Electron Eng, 2017, 44(5): 475–482. doi: 10.3969/j.issn.1003-501X.2017.05.001

    [9]

    刘盾, 杨伟, 吴时彬, 等. 主镜台阶数目对衍射成像系统传递函数的影响分析[J]. 光电工程, 2017, 44(8): 786–790. doi: 10.3969/j.issn.1003-501X.2017.08.004

    Liu D, Yang W, Wu S B, et al. Effect of the number of primary lens level on the MTF of diffractive imaging system[J]. Opto-Electron Eng, 2017, 44(8): 786–790. doi: 10.3969/j.issn.1003-501X.2017.08.004

    [10]

    Wang R Q, Zhang Z Y, Guo C, et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J]. Chin Opt Lett, 2016, 14(12): 120501. doi: 10.3788/COL201614.120501

    [11]

    Zhang J, Li M J, Yin G H, et al. Low-cost method of fabricating large-aperture, high efficiency, Fresnel diffractive membrane optic using a modified moiré technique[J]. Chin Opt Lett, 2016, 14(10): 100501. doi: 10.3788/COL201614.100501

    [12]

    Britten J A, Dixit S N, DeBruyckere M, et al. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications[J]. Appl Opt, 2014, 53(11): 2312–2316. doi: 10.1364/AO.53.002312

    [13]

    Wang S, Yang G J, Wu S B, et al. Preparation of solution-processable colorless polyamide-imides with extremely low thermal expansion coefficients through an in-situ silylation method for potential space optical applications[J]. e-Polymers, 2016, 16(5): 695–402. http://www.degruyter.com/document/doi/10.1515/epoly-2016-0100/html

    [14]

    Ni H J, Liu J G, Wang Z H, et al. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications[J]. J Ind Eng Chem, 2015, 28: 16–27. doi: 10.1016/j.jiec.2015.03.013

    [15]

    Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Appl Mater Interfaces, 2012, 4(2): 536–544. doi: 10.1021/am2014635

    [16]

    Minton T K, Wright M E, Tomczak S J, et al. Atomic oxygen effects on POSS polyimides in low earth orbit[J]. ACS Appl Mater Interfaces, 2012, 4(2): 492–502. doi: 10.1021/am201509n

    [17]

    Guo C L, Zhang Z Y, Xue D L, et al. High-performance etching of multilevel phase-type Fresnel zone plates with large apertures[J]. Opt Commun, 2018, 407: 227–233. doi: 10.1016/j.optcom.2017.09.006

    [18]

    Lei X F, Chen Y, Zhang H P, et al. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane[J]. ACS Appl Mater Interfaces, 2013, 5(20): 10207–10220. doi: 10.1021/am402957s

  • 加载中

(7)

(2)

计量
  • 文章访问数:  5734
  • PDF下载数:  1330
  • 施引文献:  0
出版历程
收稿日期:  2020-10-18
修回日期:  2021-02-08
刊出日期:  2021-04-15

目录

/

返回文章
返回