基于介电润湿效应的叠加式液体透镜波前校正

赵瑞,何懿嘉,陈露楠,等. 基于介电润湿效应的叠加式液体透镜波前校正[J]. 光电工程,2021,48(5): 200345. doi: 10.12086/oee.2021.200345
引用本文: 赵瑞,何懿嘉,陈露楠,等. 基于介电润湿效应的叠加式液体透镜波前校正[J]. 光电工程,2021,48(5): 200345. doi: 10.12086/oee.2021.200345
Zhao R, He Y J, Chen L N, et al. Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric[J]. Opto-Electron Eng, 2021, 48(5): 200345. doi: 10.12086/oee.2021.200345
Citation: Zhao R, He Y J, Chen L N, et al. Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric[J]. Opto-Electron Eng, 2021, 48(5): 200345. doi: 10.12086/oee.2021.200345

基于介电润湿效应的叠加式液体透镜波前校正

  • 基金项目:
    国家自然科学基金资助项目(61775102,61905117)
详细信息
    作者简介:
    通讯作者: 赵瑞, E-mail: zhaor@njupt.edu.cn 梁忠诚(1957-),男,博士,教授,主要从事光电子器件与系统,信息光学及应用,光信息存储技术、无线光通信技术,微流控光电子技术,软物质系统,光电子学等方面的研究。E-mail:zcliang@njupt.edu.cn
  • 中图分类号: O439

Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric

  • Fund Project: National Natural Science Foundation of China (61775102, 61905117)
More Information
  • 设计了一种基于介电润湿效应的叠加式液体透镜,分析其对含有曲率误差、倾斜误差和活塞误差的畸变波前的校正能力。采用COMSOL软件构建叠加式液体透镜模型,仿真模拟了不同电压组合下液体界面面型的变化情况,获得该叠加式液体透镜内双液体界面的变化范围; 采用ZEMAX软件,借助点扩散函数变化,分析该透镜对波前任意点处曲率误差、倾斜误差和活塞误差的校正能力。结果表明:该叠加式液体透镜可以实现同时对不同类型畸变波前的校正,相应的峰谷值(PV)由校正前19.7853λ下降到校正后0.18λ,均方根值(RMS)由校正前5.6638λ减小到校正后0.0355λ,斯特列尔比(SR)由校正前的接近0值提高到0.962的较理想状态。

  • Overview: Adaptive optics is a technique used to correct the dynamic wavefront distortion caused by atmospheric turbulence and improve the performance of the optical system. As an important part of the adaptive optics system, wavefront corrector directly affects the imaging effect. At present, the most commonly used wavefront correctors are mainly divided into two types: deformable mirror and liquid crystal spatial light modulator. Deformable mirror has been studied for the longest time and has become the most mature technology. Its principle is to install a mirror on the surface of the actuator, changing the shape of the mirror by applying voltage, and then control the beam phase. Due to the high energy consumption, large volume, and high-cost problems caused by more actuators, the application of deformable mirror is greatly limited. The liquid crystal spatial light modulator adjusts the rotation direction of the rod-shaped liquid crystal molecules through the external loading voltage, which changes the refractive index and then increases or decreases the optical path to realize the modulation of the incident beam phase. Low power consumption, high precision, and small size are remarkable advantages of it. However, the polarization dependence, low correction frequency, and slow response speed of liquid crystal materials are the choke of development. The spatial modulator with small volume, high density, and fast response is the general trend.

    In this paper, a kind of superimposed liquid lens based on the electrowetting on dielectric is proposed. The distortion wavefront can be corrected by controlling the liquid interface with the effect. It has the dominant position of small volume, easy array, no mechanical motion, no polarization dependence, and fast response speed comparing with the traditional deformable mirror and liquid crystal light modulator. Firstly, according to the theory of electrowetting on dielectric, the structure of the liquid lens system is designed, and the feasibility of the wavefront correction is deduced. Then, the changes of the liquid interface in the liquid lens units with different voltage combinations are simulated in COMSOL software. After that, aberration is introduced into the ideal wavefront of ZEMAX. On the basis of the voltage surface relationship obtained in COMSOL, the working voltage is adjusted to change the liquid interface surface shape, so as to realize the correction of the aberration. Finally, the phase distribution and point spread function distribution of the distorted wavefront correction process are given. The results show that the lens system has a good ability to correct the aberrations introduced at any point of the wavefront, the corresponding peak valley value decreases from 19.7853λ to 0.18λ, the root-mean-square value decreases from 5.6638λ to 0.0355λ, and Strehl ratio increases from near zero value to 0.962. The related research results will promote the development of wavefront correction technology and provide a theoretical basis for the realization of liquid lens for wavefront correction.

  • 加载中
  • 图 1  叠加式液体透镜结构示意图。(a) 液体透镜结构;(b)~(d) 当只对底层棱镜单元施加电压(b),对底层与中层结构施加电压(c),对三层结构同时施加电压(d)时,液体界面变化情况

    Figure 1.  Structure of stacked liquid lens. (a) Structures of liquid lens; (b)~(d) When applying voltages to the bottom layer (b), applying voltages to both the bottom and the middle layer (c), and applying voltages to all three layers (d), the states of liquid interfaces is shown

    图 2  叠加液体透镜畸变波前校正原理图。

    Figure 2.  Principle of distorted wavefront correction. (a) Process of correction; (b) Tilt error correction of the bottom layer; (c) Curvature error correction of the middle layer; (d) Piston error correction of the top layer

    图 3  叠加式液体透镜界面面型图。(a) 自然状态下液体界面;(b) 施加电压使三层液体界面呈平面;(c) 改变底层电压;(d) 改变底层与中层电压;(e) 改变全部三层电压

    Figure 3.  Interface shape of the stacked liquid lens unit. (a) Liquid interface in natural state; (b) Flat liquid interface by applying voltages; (c) Voltages change in the bottom layer; (d) Voltages change in both the bottom and the middle layers; (e) Voltages change in all three layers

    图 4  系统光路图。(a) 理想状态;(b) 携带三种误差;(c) 三种误差校正后

    Figure 4.  System optical path. (a) Perfect state; (b) Introducing distortions; (d) Complete correction

    图 5  位相分布图

    Figure 5.  Distributions of the phase

    图 6  点扩散函数分布图

    Figure 6.  Distributions of the point spread function

    表 1  COMSOL参数设置

    Table 1.  Setting of COMSOL parameters

    Parameter Value Remarks
    Theta1 & Theta2 135° Initial contact angle ([EMIm][NTf2] & Dodecane)
    Theta3 140° Initial contact angle (0.01%KCL/1wt%SDS & Dodecane)
    Gamma1 & Gamma2 0.011 N/m Surface tension([EMIm][NTf2] & Dodecane)
    Gamma3 0.069 N/m Surface tension(0.01%KCL/1wt%SDS & Dodecane)
    EPSR 2.65 Relative dielectric constant
    D_f 1 μm Dielectric thickness
    下载: 导出CSV

    表 2  液体参数设置

    Table 2.  Settings of liquid parameters

    Liquid Density/(kg·m-3) Refractive index Dynamic viscosity/(cp)
    [EMIM][NTf2] 1380 1.4227 32
    0.01%KCL/1wt%SDS 1000 1.33 2.7
    Dodecane 753 1.4206 1.36
    下载: 导出CSV

    表 3  系统结构参数

    Table 3.  Structural parameters of system

    Surf. type Radius Thickness Glass Semi-diameter
    OBJ Standard Infinity Infinity 0
    1 Zernike standard phase Infinity 0 1
    2 Zernike standard phase Infinity 0 1
    STO Standard Infinity 0 1
    4 Non-sequential component Infinity - 1
    5 Standard Infinity 0.566 1.33 1
    6 Standard -3.864 0.434 1.4206 1
    7 Standard Infinity 0.478 1.4206 1
    8 Standard 28.654 0.522 1.4227 1
    9 Standard Infinity 0 1
    10 Standard -3.291E+011 0.2 BK7 1
    11 Standard -7.752 15.001 1
    IMA Standard Infinity - 1
    下载: 导出CSV

    表 4  像差引入参数

    Table 4.  Introduction of distortions

    Surf. type Norm radius Zernike 1 Zernike 2 Zernike 3 Zernike 4
    1 Zernike standard phase 1 0 0 -15 -5.7
    2 Zernike standard phase 0.5 -1E-003 0 0 0
    下载: 导出CSV
  • [1]

    高玉峰. 基于自适应光学的双光子显微波前畸变矫正研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Gao Y F. Research on wavefront correction of two photo microscopy based on adaptive optics[D]. Harbin: Harbin Institute of Technology, 2016.

    [2]

    孙飞. 液晶—变形镜的高低阶式自适应光学系统研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    Sun F. Study on high-low order adaptive optics system based on liquid crystal wavefront corrector and deformable mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.

    [3]

    蔡冬梅, 姚军, 姜文汉. 液晶空间光调制器用于波前校正的性能[J]. 光学学报, 2009, 29(2): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200902002.htm

    Cai D M, Yao J, Jiang W H. Performance of liquid-crystal spatial light modulator using for wave-front correction[J]. Acta Opt Sin, 2009, 29(2): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200902002.htm

    [4]

    林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学, 2012, 5(4): 337-351. doi: 10.3969/j.issn.2095-1531.2012.04.005

    Lin X D, Xue C, Liu X Y, et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chin Opt, 2012, 5(4): 337-351. doi: 10.3969/j.issn.2095-1531.2012.04.005

    [5]

    韩柯娜. 变形镜与液晶空间光调制器用于波前校正的对比研究[D]. 西安: 西安理工大学, 2019.

    Han K N. Comparison between deformable mirror and liquid crystal spatial light modulator for wavefront correction[D]. Xi'an: Xi'an University of Technology, 2019.

    [6]

    魏伟, 胡晓云, 谢永军. 利用可变形镜进行像差校正研究[J]. 光子学报, 2009, 38(5): 1163-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200905027.htm

    Wei W, Hu X Y, Xie Y J. Aberration correction using MEMS-DM[J]. Acta Photon Sin, 2009, 38(5): 1163-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200905027.htm

    [7]

    骆海军. 相位型液晶空间光调制器的研究[D]. 大连: 大连理工大学, 2008.

    Luo H J. Research of phase-only liquid crystal spatial light modulator[D]. Dalian: Dalian University of Technology, 2008.

    [8]

    彭增辉, 曹召良, 姚丽双, 等. 快速响应液晶波前校正器的研究进展[J]. 中国科学: 物理学力学天文学, 2017, 47(8): 084203. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201708003.htm

    Peng Z H, Cao Z L, Yao L S, et al. The review of liquid crystal wavefront corrector with fast response property[J]. Sci Sin Phys, Mech Astron, 2017, 47(8): 084203. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201708003.htm

    [9]

    杨龙啸, 赵瑞, 孔梅梅, 等. 介电润湿液体棱镜阵列的三维空间光束指向控制[J]. 激光与光电子学进展, 2019, 56(16): 162201. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201916026.htm

    Yang L X, Zhao R, Kong M M, et al. Beam steering control of liquid prism array based on electrowetting-on-dielectric in three-dimensional space[J]. Laser Optoelect Prog, 2019, 56(16): 162201. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201916026.htm

    [10]

    曹召良, 穆全全, 胡立发, 等. 液晶波前校正器特性研究[J]. 光子学报, 2008, 37(10): 2043-2047. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200810026.htm

    Cao Z L, Mu Q Q, Hu L F, et al. Characteristics of liquid crystal wavefront corrector[J]. Acta Photon Sin, 2008, 37(10): 2043-2047. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200810026.htm

    [11]

    Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras[J]. Appl Phys Lett, 2004, 85(7): 1128-1130. doi: 10.1063/1.1779954

    [12]

    Ashtiani O A, Jiang H R. Design and fabrication of an electrohydrodynamically actuated microlens with areal density modulated electrodes[J]. J Micromech Microeng, 2015, 26(1): 015004. http://adsabs.harvard.edu/abs/2016JMiMi..26a5004O

    [13]

    Clement C E, Park S Y. High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method[J]. Appl Phys Lett, 2016, 108(19): 191601. doi: 10.1063/1.4949265

    [14]

    Clement C E, Thio S K, Park S Y. An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD)[J]. Sens Actuators: B Chem, 2017, 240: 909-915. doi: 10.1016/j.snb.2016.08.125

    [15]

    Lee J, Park Y, Chung S K. Multifunctional liquid lens for variable focus and aperture[J]. Sens Actuators: A Phys, 2019, 287: 177-184. doi: 10.1016/j.sna.2019.01.014

    [16]

    Vuelban E M, Bhattacharya N, Braat J J M. Liquid deformable mirror for high-order wavefront correction[J]. Opt Lett, 2006, 31(11): 1717-1719. doi: 10.1364/OL.31.001717

    [17]

    Niederriter R D, Watson A M, Zahreddine R N, et al. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems[J]. Appl Opt, 2013, 52(14): 3172-3177. doi: 10.1364/AO.52.003172

    [18]

    Ashtiani A O, Jiang H R. A liquid optical phase shifter with an embedded electrowetting actuator[J]. J Microelectromech Syst, 2017, 26(2): 305-307. doi: 10.1109/JMEMS.2017.2650406

    [19]

    Wang Q H, Xiao L, Liu C, et al. Optofluidic variable optical path modulator[J]. Sci Rep, 2019, 9(1): 7082. doi: 10.1038/s41598-019-43599-4

    [20]

    赵瑞, 陈露楠, 孔梅梅, 等. 用于波前补偿的三液体透镜阵列的设计分析[J]. 激光与光电子学进展, 2020, 57(21): 212202.

    Zhao R, Chen L N, Kong M M, et al. Design and analysis of triple liquid lens array for wavefront compensation[J]. Laser Optoelect Prog, 2020, 57(21): 212202.

    [21]

    赵瑞, 马建权, 党智勇, 等. 基于介电润湿三液体透镜的变焦光学系统的设计与分析[J]. 光子学报, 2017, 46(6): 0622005. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201706029.htm

    Zhao R, Ma J Q, Dang Z Y, et al. Design and analysis of an optical zoom system using electrowetting-based triple liquid lens[J]. Acta Photon Sin, 2017, 46(6): 0622005. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201706029.htm

  • 加载中

(6)

(4)

计量
  • 文章访问数:  4906
  • PDF下载数:  1448
  • 施引文献:  0
出版历程
收稿日期:  2020-09-21
修回日期:  2021-03-17
刊出日期:  2021-05-15

目录

/

返回文章
返回