用于水下单光子视频通信的联合编码研究

戴伟辉,鄢秋荣,王明,等. 用于水下单光子视频通信的联合编码研究[J]. 光电工程, 2021, 48(5): 200327. doi: 10.12086/oee.2021.200327
引用本文: 戴伟辉,鄢秋荣,王明,等. 用于水下单光子视频通信的联合编码研究[J]. 光电工程, 2021, 48(5): 200327. doi: 10.12086/oee.2021.200327
Dai W H, Yan Q R, Wang M, et al. Research on joint coding for underwater single-photon video communication[J].Opto-Electron Eng, 2021, 48(5): 200327. doi: 10.12086/oee.2021.200327
Citation: Dai W H, Yan Q R, Wang M, et al. Research on joint coding for underwater single-photon video communication[J]. Opto-Electron Eng, 2021, 48(5): 200327. doi: 10.12086/oee.2021.200327

用于水下单光子视频通信的联合编码研究

  • 基金项目:
    国家自然科学基金资助项目(61865010,61565012);江西省杰出青年人才资助计划(20171BCB23007)
详细信息
    作者简介:
    通讯作者: 鄢秋荣(1982-),男,博士,副教授,主要从事无线光通信和光电精密仪器方面的研究。E-mail:yanqiurong@ncu.edu.cn
  • 中图分类号: TN929.14

Research on joint coding for underwater single-photon video communication

  • Fund Project: National Natural Science Foundation of China (61865010, 61565012) and Funding Scheme to Outstanding Young Talents of Jiangxi Province (20171BCB23007)
More Information
  • 为了实现有效与可靠的视频传输,针对水下单光子通信系统,提出了一种基于字典学习和LT码级联LDPC码的视频联合编码方案。通过字典学习稀疏编码,极大地压缩了视频数据量。根据水下单光子信道存在的删除特性,利用LT码级联LDPC码的信道级联编码方法,同时克服了LT码译码开销过大的缺点。由于LT码存在译码失败概率的问题,提出了译码成功双反馈机制。实验结果表明,当信道误码率处于10-2数量级、视频压缩率为75.6%时,可以实现平均峰值信噪比(PSNR)为37.4921 dB重建视频帧。

  • Overview: In recent years, underwater wireless optical communication has played an important role in environmental inspection, marine exploration fields, etc., and has received more and more attention. It has the advantages of high bandwidth, fast speed, strong anti-electromagnetic interference ability, etc. Because the video can convey information intuitively, the transmission of video in underwater wireless optical communication has become a research hotspot. In order to achieve effective and reliable video transmission, a video joint coding scheme based on dictionary learning and concatenation of LT code and LDPC code is proposed for underwater single-photon communication system. The scheme improves the data compression rate and data coding efficiency, and achieves the optimal synchronization of transmission quality and transmission efficiency. Aiming at the problem of large amount of video data, the dictionary learning sparse coding method is used, and each frame of video image transmits the sparse matrix information, and the decoding of each video frames does not affect each other. This method greatly reduces the amount of video data and improves the effectiveness of the communication system. In view of the deletion characteristic of underwater single-photon channel, LT-LDPC channel concatenated coding method is used. LT digital fountain code is specially designed to deal with various deletion channels. As long as enough fountain packets are received, the data can be restored. However, since the decoding overhead is too large, erroneous symbols are corrected by cascading LDPC codes to reduce the decoding overhead. Through experiments, the influence of encoding method and decoding success judgment threshold on decoding overhead is analyzed. The results prove that cascaded coding can overcome the disadvantage of excessive decoding overhead of LT code. At the same time, the decoding overhead decreases with the increase of the judgment threshold of decoding success. Aim to solve the problem of decoding failure probability of LT code, a double feedback mechanism for decoding success is proposed, which can also realize the clear recovery of video frames in a communication environment with a high bit error rate. Experimental results show that as the judgment threshold of decoding success increases, the average PSNR of video frames gradually decreases. As the video compression rate increases, the average PSNR value becomes smaller. When the channel error rate is in the order of 10-2 and the video compression rate is 75.6%, the video frames can be reconstructed with an average peak signal-to-noise ratio (PSNR) of 37.4921 dB.

  • 加载中
  • 图 1  水下单光子视频通信实验系统方案

    Figure 1.  Experimental system scheme of underwater single-photon video communication

    图 2  水下单光子视频通信系统图

    Figure 2.  Diagram of underwater single-photon video communication system

    图 3  基于字典学习和LT码级联LDPC码的视频联合编码方案

    Figure 3.  Video joint coding scheme based on dictionary learning and the concatenation of LT code and LDPC code

    图 4  发送数据包帧格式

    Figure 4.  Frame format of sending data packet

    图 5  LT码级联LDPC码的码字设计和实现过程

    Figure 5.  Codeword design and implementation process of the concatenation of LT code and LDPC cod

    图 6  编码包数的统计分布情况

    Figure 6.  Statistical distribution of the number of encoded packets

    图 7  译码成功判定阈值与译码开销关系

    Figure 7.  The relationship between the judgement thresholds of decoding success and the encoding consumption

    图 8  译码成功判定阈值与平均PSNR关系

    Figure 8.  The relationship between the judgement thresholds of decoding success and the average PSNR

    图 9  不同处理方式下的四帧图像比较

    Figure 9.  Comparison of four frames of images under different processing methods

    图 10  不同压缩率下的四帧图像比较

    Figure 10.  Comparison of four frames of images under different compression ratios

  • [1]

    Zeng Z Q, Fu S, Zhang H H, et al. A survey of underwater optical wireless communications[J]. IEEE Commun Surv Tut, 2017, 19(1): 204-238. doi: 10.1109/COMST.2016.2618841

    [2]

    Kaushal H, Kaddoum G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547. doi: 10.1109/ACCESS.2016.2552538

    [3]

    Mendez P A, James R. A comparative study of underwater wireless optical communication for three different communication links[J]. IOSR J Electron Commun Eng, 2015, 10(3): 40-48. http://www.iosrjournals.org/iosr-jece/papers/Vol.%2010%20Issue%203/Version-2/H010324048.pdf

    [4]

    Arnon S. Underwater optical wireless communication network[J]. Opt Eng, 2010, 49(1): 015001. doi: 10.1117/1.3280288

    [5]

    Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. Appl Opt, 2002, 41(6): 1022-1028. doi: 10.1364/AO.41.001022

    [6]

    Zhang J, Si-Ma L H, Wang B Q, et al. Low-complexity receivers and energy-efficient constellations for SPAD VLC systems[J]. IEEE Photon Technol Lett, 2016, 28(17): 1799-1802. doi: 10.1109/LPT.2016.2572300

    [7]

    Ji Y W, Wu G F, Wang C, et al. Experimental study of SPAD-based long distance outdoor VLC systems[J]. Opt Commun, 2018, 424: 7-12. doi: 10.1016/j.optcom.2018.04.008

    [8]

    Wang C, Yu H Y, Zhu Y J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Opt Express, 2017, 25(23): 28783-28793. doi: 10.1364/OE.25.028783

    [9]

    Yan Q R, Li Z H, Hong Z, et al. Photon-counting underwater wireless optical communication by recovering clock and data from discrete single photon pulses[J]. IEEE Photon J, 2019, 11(5): 7905815. http://www.ncbi.nlm.nih.gov/pubmed/30823639

    [10]

    Huang X X, Wang Z X, Shi J Y, et al. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver[J]. Opt Express, 2015, 23(17): 22034-22042. doi: 10.1364/OE.23.022034

    [11]

    卓力, 张菁, 李晓光. 新一代高效视频编码技术[M]. 北京: 人民邮电出版社, 2013: 24-33.

    Zhuo L, Zhang J, Li X G. High Efficiency Video Coding Techiques for Next Generation[M]. Beijing: Posts & Telecom Press, 2013: 24-33.

    [12]

    Marpe D, Wiegand T, Sullivan G J, et al. The H. 264/MPEG4 advanced video coding standard and its applications[J]. IEEE Commun Mag, 2006, 44(8): 134-143. doi: 10.1109/MCOM.2006.1678121

    [13]

    Robinson B S, Kerman A J, Dauler E A, et al. 781 Mbit/s photon-counting optical communications using a superconducting nanowire detector[J]. Opt Lett, 2006, 31(4): 444-446. doi: 10.1364/OL.31.000444

    [14]

    Hiskett P A, Lamb R A. Underwater optical communications with a single photon-counting system[J]. Proc SPIE, 2014, 9114: 91140P. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2050563

    [15]

    韩彪, 赵卫, 汪伟, 等. 面向水下应用的改进型光子计数通信方法[J]. 光学学报, 2016, 36(8): 0806004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201608007.htm

    Han B, Zhao W, Wang W, et al. Modified photon counting communication method for underwater application[J]. Acta Opt Sin, 2016, 36(8): 0806004. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201608007.htm

    [16]

    何小梅, 李晓峰, 张冬云, 等. 高效纠错编码技术在无线光通信中的性能分析[J]. 光子学报, 2008, 37(12): 2427-2429. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200812014.htm

    He X M, Li X F, Zhang D Y, et al. Performance for efficient error correction coding in wireless optical communication[J]. Acta Photonica Sinica, 2008, 37(12): 2427-2429. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200812014.htm

    [17]

    Irannejad M, Mahdavi-Nasab H. Low bit-rate SNR scalable video coding based on overcomplete dictionary learning and sparse representation[J]. Multidimens Syst Signal Proc, 2020, 31(2): 465-489. doi: 10.1007/s11045-019-00671-6

    [18]

    郭继昌, 金卯亨嘉. 一种基于字典学习的压缩感知视频编解码模型[J]. 数据采集与处理, 2015, 30(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201501005.htm

    Guo J C, Jin M H J. Dictionary learning-based compressive video sensing codec model[J]. J Data Acquisit Proc, 2015, 30(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201501005.htm

    [19]

    Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans Signal Proc, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199

    [20]

    Chen H W, Kang L W, Lu C S. Dictionary learning-based distributed compressive video sensing[C]//28th Picture Coding Symposium, Nagoya, Japan, 2010: 210-213.

    [21]

    Sun Y P, Xu M, Tao X M, et al. Online dictionary learning based intra-frame video coding via sparse representation[C]//The 15th International Symposium on Wireless Personal Multimedia Communications, Taipei, Taiwan, 2012: 16-20.

    [22]

    Xiong H K, Pan Z M, Ye X W, et al. Sparse spatio-temporal representation with adaptive regularized dictionary learning for low bit-rate video coding[J]. IEEE Trans Circuits Syst Video Technol, 2013, 23(4): 710-728. doi: 10.1109/TCSVT.2012.2221271

    [23]

    荣子莉, 井帅奇, 洪劲松. 自由空间光通信中的数字喷泉码方法[J]. 湖南科技大学学报(自然科学版), 2017, 32(4): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201704009.htm

    Rong Z L, Jing S Q, Hong J S. Research on digital fountain code method of free space optical communication[J]. J Hunan Univ Sci Technol (Nat Sci Ed), 2017, 32(4): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201704009.htm

    [24]

    Prakash G, Kulkrni M, Sripati U, et al. Performance analysis of free space optical Links Encoded Using Luby Transform code[C]//2012 International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 2012: 1-6.

    [25]

    陈丹, 柯熙政. 基于LDPC码的无线光通信副载波误码性能分析[J]. 激光技术, 2011, 35(3): 388-390, 402. doi: 10.3969/j.issn.1001-3806.2011.03.026

    Chen D, Ke X Z. Analysis on error rate of wireless optical communication using subcarrier modulation on LDPC code[J]. Laser Technology, 2011, 35(3): 388-390, 402. doi: 10.3969/j.issn.1001-3806.2011.03.026

    [26]

    林永照, 吴成柯, 刘薇. LT码和q-LDPC码级联方案在深空通信中的应用[J]. 电子与信息学报, 2010, 32(8): 1898-1903. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201008023.htm

    Lin Y Z, Wu C K, Liu W. Application of the concatenation of q-LDPC and luby transform codes in deep communications[J]. J Electron Inform Technol, 2010, 32(8): 1898-1903. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201008023.htm

    [27]

    柯熙政, 殷致云. 无线激光通信系统中的编码理论[M]. 北京: 科学出版社, 2009: 188-226.

    Ke X Z, Yin Z Y. Coding Theory in Wireless Laser Communication System[M]. Beijing: Science Press, 2009: 188-226.

    [28]

    Hong Z, Yan Q R, Li Z H, et al. Photon-counting underwater optical wireless communication for reliable video transmission using joint source-channel coding based on distributed compressive sensing[J]. Sensors, 2019, 19(5): 1042-1053. doi: 10.3390/s19051042

    [29]

    王新泽. LT码的度分布设计及译码算法研究[D]. 西安: 西安电子科技大学, 2014: 1-75.

    Wang X Z. Research on LT codes degree distribution optimization and decoding algorithms[D]. Xi'an: Xidian University, 2014: 1-75.

    [30]

    Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans Inform Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108

    [31]

    李艳子. 超强前向纠错技术在100Gb/s WDM系统中的应用与研究[D]. 武汉: 武汉邮电科学研究院, 2012: 1-67.

    Li Y Z. Applications and research on SFEC for 100Gb/s WDM system[D]. Wuhan: Wuhan Research Institute of Posts and Telecommunications, 2012: 1-67.

    [32]

    张勋, 曹阳, 彭小峰, 等. 自由空间光通信中LT码的编码技术研究[J]. 半导体光电, 2017, 38(2): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201702019.htm

    Zhang X, Cao Y, Peng X F, et al. Research on coding technology of LT code in free space optical communication[J]. Semicond Optoelectron, 2017, 38(2): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201702019.htm

  • 加载中

(10)

计量
  • 文章访问数:  4088
  • PDF下载数:  855
  • 施引文献:  0
出版历程
收稿日期:  2020-09-04
修回日期:  2021-01-13
刊出日期:  2021-05-15

目录

/

返回文章
返回