一种高精度的非线性相位误差校正方法

赖姗姗,刘元坤,于馨,等. 一种高精度的非线性相位误差校正方法[J]. 光电工程,2021,48(4):200296. doi: 10.12086/oee.2021.200296
引用本文: 赖姗姗,刘元坤,于馨,等. 一种高精度的非线性相位误差校正方法[J]. 光电工程,2021,48(4):200296. doi: 10.12086/oee.2021.200296
Lai S S, Liu Y K, Yu X, et al. A high-accuracy nonlinear phase error compensation method[J]. Opto-Electron Eng, 2021, 48(4): 200296. doi: 10.12086/oee.2021.200296
Citation: Lai S S, Liu Y K, Yu X, et al. A high-accuracy nonlinear phase error compensation method[J]. Opto-Electron Eng, 2021, 48(4): 200296. doi: 10.12086/oee.2021.200296

一种高精度的非线性相位误差校正方法

  • 基金项目:
    国家自然科学基金资助项目(61675141);四川省重大科学仪器设备专项(2019ZDZX0038)
详细信息
    作者简介:
    *通讯作者: 刘元坤(1975-),男,博士,副教授,主要从事光学三维传感方面的研究. E-mail: lyk@scu.edu.cn
  • 中图分类号: TP391; O438

A high-accuracy nonlinear phase error compensation method

  • Fund Project: National Natural Science Foundation of China (61675141) and Sichuan Key Scientific Instrument and Device Project (2019ZDZX0038)
More Information
  • 在相位测量轮廓术中,测量系统中投影仪等存在的非线性响应大大影响了相位测量的精度,因此,如何快速高效地消除系统中的非线性误差是提高测量精度的关键。本文建立了相位误差的精确模型,并提出了一种基于相位误差精确模型的相位提取方法,利用高步数相移算法预先标定各频谱分量的比例关系,再通过迭代运算即可得到高精度的相位分布。实验结果表明,该方法可有效补偿非线性误差,从而大大提高相位测量精度,同时,由于各频谱分量是通过高步数相移预先标定的,仅三步相移即可得到高精度相位分布,满足了快速、实时的测量要求。

  • Overview: The phase-shifting method uses multiple grating fringe images to solve the phase value pixel by pixel. This method has the advantages of high measurement accuracy and low cost, and is widely used in phase-based 3D topography measurement. Generally, it includes random error and systematic error. The former is usually represented by random noise, while the latter can be divided into phase-shifting error and nonlinear error. Among them, the nonlinear phase error is mainly caused by the nonlinear response in the measurement system, which is inevitable. Therefore, how to quickly and efficiently eliminate the nonlinear error in the system is the key to improve the measurement accuracy. This paper, which takes the three-step phase-shifting method as an example, proposes a phase compensation method based on the accurate mathematical model of phase error. We project a set of large phase shift fringe patterns in the calibration process, and collect all the harmonic components by using a large-step phase-shifting algorithm to measure a reference plane. In the actual measurement, the real phase is calculated by the three-step phase-shifting method, and then the phase compensation can be realized by iteration according to the phase error model and the known amplitude coefficients of all the harmonic components. In order to verify the effectiveness of this algorithm. We project a set of 18-step phase-shifting fringe patterns to obtain the ideal phase distributions and use three of them to get the nonlinear error-inclusive phase distributions. Then we use Pan's method and our method to compensate the phase error of the object respectively, and both methods are quantitatively evaluated by the residual errors. The experimental results show that the standard deviation of the residual errors without compensation is 0.1662 rad, which is reduced to 0.0581 rad by using Pan's method and 0.0193 rad by using our proposed method. The maximum phase error decreased from 0.2676 rad to 0.0807 rad. The original phase error without compensation is mainly 3-fold frequency characteristic, and the residual phase error is mainly 6-fold frequency characteristic after using Pan's method. It means that there are still uncompensated periodic errors, and the residual errors do not have obvious periodic distribution after compensated by our method. The experimental results show that this method is feasible and effective in three-dimensional measurement. The algorithm only needs three sinusoidal fringes to realize high-precision phase error compensation, which has the advantages of high precision and fast speed.

  • 加载中
  • 图 1  PMP系统示意图

    Figure 1.  Optical diagram of PMPDLPCCD

    图 2  高次谐波对条纹正弦性的影响。(a) 条纹强度;(b) 条纹的傅里叶频谱

    Figure 2.  The influence of higher harmonics on the sinusoidality of fringes. (a) The intensity of the fringe; (b) Fourier spectrum of the fringe

    图 3  φ与Δφ的关系

    Figure 3.  The relationship between the φ and Δφ

    图 4  相位误差补偿流程图

    Figure 4.  Flow chart of phase error compensation

    图 5  剩余相位误差展开图。(a) 变形条纹;(b) 未补偿相位误差;(c) Pan的方法;(d) LUT法;(e) 本文方法

    Figure 5.  Residual phase error. (a) Deformation fringe; (b) Phase without compensation; (c) Phase compensated by Pan's method; (d) Phase compensated by LUT; (e) Phase compensated by our method

    图 6  三种方法模拟补偿后的剩余相位误差

    Figure 6.  The residual phase difference of simulation experiment by three methods

    图 7  三种方法对平面补偿后的剩余相位误差

    Figure 7.  The residual phase difference of plane by three methods

    图 8  葫芦的补偿实验。(a) 变形条纹;(b) 未补偿相位误差;(c) Pan的方法;(d) LUT法;(e) 本文方法

    Figure 8.  Object compensation experiment. (a) Deformation fringe; (b) Phase without compensation; (c) Phase compensated by Pan's method; (d) Phase compensated by LUT; (e) Phase compensated by our method

    图 9  三种方法对葫芦补偿后的剩余相位误差

    Figure 9.  The residual phase difference of object by three methods

  • [1]

    Chen F, Brown G M, Song M M. Overview of three-dimensional shape measurement using optical methods[J]. Opt Eng, 2000, 39(1): 10-22. doi: 10.1117/1.602438

    [2]

    Zhang S. High-speed 3D shape measurement with structured light methods: a review[J]. Opt Lasers Eng, 2018, 106: 119-131. http://www.sciencedirect.com/science/article/pii/S0143816617313246

    [3]

    Liu F W, Wu Y Q, Wu F. Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology[J]. Opt Express, 2015, 23(8): 10794-10807. doi: 10.1364/OE.23.010794

    [4]

    Liu F W, Wu Y Q, Wu F, et al. Generalized phase shifting interferometry based on Lissajous calibration technology[J]. Opt Lasers Eng, 2016, 83: 106-115. doi: 10.1016/j.optlaseng.2016.03.003

    [5]

    Zhang S, Huang P S. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method[J]. Opt Eng, 2007, 46(6): 063601. doi: 10.1117/1.2746814

    [6]

    Cui H H, Zhao Z M, Wu Y H, et al. Digital fringe image gamma modeling and new algorithm for phase error compensation[J]. Optik, 2014, 125(24): 7175-7181. doi: 10.1016/j.ijleo.2014.07.109

    [7]

    林俊义, 黄剑清, 江开勇. 分区域Gamma预编码校正的相位误差补偿[J]. 光电工程, 2016, 43(9): 32-38. doi: 10.3969/j.issn.1003-501X.2016.09.006

    Lin J Y, Huang J Q, Jiang K Y. Subregional Gamma pre-coding correction for phase error compensation[J]. Opto-Electron Eng, 2016, 43(9): 32-38. doi: 10.3969/j.issn.1003-501X.2016.09.006

    [8]

    Zhang C W, Zhao H, Zhang L, et al. Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry[J]. Meas Sci Technol, 2015, 26(3): 035201. doi: 10.1088/0957-0233/26/3/035201

    [9]

    Wang Z Y, Nguyen D A, Barnes J C. Some practical considerations in fringe projection profilometry[J]. Opt Lasers Eng, 2010, 48(2): 218-225. doi: 10.1016/j.optlaseng.2009.06.005

    [10]

    Liu K, Wang Y C, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. J Opt Soc Am A, 2010, 27(3): 553-562. doi: 10.1364/JOSAA.27.000553

    [11]

    Guo H W, He H T, Chen M Y. Gamma correction for digital fringe projection profilometry[J]. Appl Opt, 2004, 43(14): 2906-2914. doi: 10.1364/AO.43.002906

    [12]

    Zhang S. Flexible 3D shape measurement using projector defocusing: extended measurement range[J]. Opt Lett, 2010, 35(7): 934-936. doi: 10.1364/OL.35.000934

    [13]

    Xu Y, Ekstrand L, Dai J F, et al. Phase error compensation for three-dimensional shape measurement with projector defocusing[J]. Appl Opt, 2011, 50(17): 2572-2581. doi: 10.1364/AO.50.002572

    [14]

    Zheng D L, Da F P. Absolute phase retrieval for defocused fringe projection three-dimensional measurement[J]. Opt Commun, 2014, 312: 302-311. doi: 10.1016/j.optcom.2013.09.056

    [15]

    Zhang S, Yau S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector[J]. Appl Opt, 2007, 46(1): 36-43. doi: 10.1364/AO.46.000036

    [16]

    樊敏, 张启灿. 相移条纹非线性相位误差补偿方法[J]. 激光杂志, 2019, 40(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201911004.htm

    Fan M, Zhang Q C. Nonlinear phase error compensation method for phase-shifting fringe[J]. Laser J, 2019, 40(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201911004.htm

    [17]

    Pan B, Kemao Q, Huang L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Opt Lett, 2009, 34(4): 416-418. doi: 10.1364/OL.34.000416

  • 加载中

(9)

计量
  • 文章访问数:  5682
  • PDF下载数:  1074
  • 施引文献:  0
出版历程
收稿日期:  2020-08-12
修回日期:  2020-10-20
刊出日期:  2021-04-15

目录

/

返回文章
返回