线性正则变换的离散化研究进展

孙艳楠, 李炳照, 陶然. 线性正则变换的离散化研究进展[J]. 光电工程, 2018, 45(6): 170738. doi: 10.12086/oee.2018.170738
引用本文: 孙艳楠, 李炳照, 陶然. 线性正则变换的离散化研究进展[J]. 光电工程, 2018, 45(6): 170738. doi: 10.12086/oee.2018.170738
Sun Yannan, Li Bingzhao, Tao Ran. Research progress on discretization of linear canonical transform[J]. Opto-Electronic Engineering, 2018, 45(6): 170738. doi: 10.12086/oee.2018.170738
Citation: Sun Yannan, Li Bingzhao, Tao Ran. Research progress on discretization of linear canonical transform[J]. Opto-Electronic Engineering, 2018, 45(6): 170738. doi: 10.12086/oee.2018.170738

线性正则变换的离散化研究进展

  • 基金项目:
    国家自然科学基金资助项目(61671063);国家自然科学基金创新研究群体基金资助项目(61421001)
详细信息
    作者简介:
    *通讯作者: 李炳照(1975-),男,博士,教授,主要从事小波变换、分数阶Fourier变换、线性正则变换的基本理论及其在非平稳信号分析与处理中应用的研究。E-mail:li_bingzhao@bit.edu.cn
  • 中图分类号: O436.3

Research progress on discretization of linear canonical transform

  • Fund Project: Supported by National Natural Science Foundation of China (61671063) and Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61421001)
More Information
  • 线性正则变换(LCT)是Fourier变换和分数阶Fourier变换的广义形式。近年来研究成果表明, LCT在光学、信号处理及应用数学等领域有广泛的应用, 而离散化成为了其得以应用的关键。由于LCT的离散算法不能简单直接地将时域变量和LCT域变量离散化得到, 因此LCT的离散算法成为近年来的研究重点。本文依据LCT的离散化发展历史, 对其重要研究进展和现状进行了系统归纳和简要评述, 并给出不同离散化算法之间的区别和联系, 指明了未来发展方向。这对研究者全面了解LCT离散化方法具有很好的参考价值, 可以进一步促进其工程应用。

  • Overview:Linear canonical transformation (LCT) is a generalized form of linear integral transform, which is a three-parameter linear integral transform. The LCT unifies a variety of transforms from the well-known Fourier transform (FT), fractional Fourier transform (FRFT) and Fresnel transform (also known as chirp convolution (CC)) to simple operations such as scaling and chirp multiplication (CM). The LCT is an important tool in optics because a broad class of optical systems including thin lenses, sections of free space in the Fresnel approximation, sections of quadratic graded-index media, and arbitrary concatenations of any number of these, sometimes referred to as first-order optical systems the paraxial light propagation can be modeled by the LCT. Besides, as a generalization of the transforms mentioned above, the LCT could be more useful and attractive in many signal processing applications, such as filter design, radar system, time-frequency analysis, phase reconstructions, and so on. On the other hand, the LCT can also be used in the fields of application mathematics, such as solution of differential equations. Therefore, the LCT has attracted a considerable amount of attention in many areas. In order to promote the applications of LCT, the discretization becomes the key vital issue of the LCT. Since the discretization of LCT cannot be obtained by directly sampling in time domain and LCT domain, it has been investigated recently. After the continuous LCT has been introduced, the definition and implementation of the discrete LCT (DLCT) have been widely considered by many researchers. Based on the development history of LCT discretization, a review of important research progress and current situation of discretization methods in the last nearly two decades is presented in this paper. The discretization algorithms include, discrete-time LCT, linear canonical series, discrete linear canonical transform. In this paper, the existing discretization methods are divided into three categories, directly discrete LCT, which appeared to have been first undertaken by Pei and Ding; operator decomposition LCT, which decomposed into products of these special operator combinations through the benefit of the additive property of the LCT; base decomposition fast discrete LCT, which was also first utilized by Hennelly and Sheridan to fast-implement DLCT; and other discrete LCT. Meanwhile, the connection among different discretization algorithms and the future development direction are given. It provides important reference value for researcher in the related fields, and can further promote its engineering application. With the deepening of research, LCT will be more and more widely used in practical applications.

  • 加载中
  • 图 1  一些变换对信号WVD影响。(a)原信号的WVD;(b)尺度变换之后;(c) Fourier变换之后;(d) Chirp乘积变换之后;(e) Chirp卷积变换之后;(f)分数阶Fourier变换之后

    Figure 1.  WVD of (a) original signal, (b) scale transform, (c) FT, (d) CM, (e) CC, and (f) FRFT

    图 2  任意信号LCT的WVD的影响。(a)变换之前;(b) LCT变换之后

    Figure 2.  WVD of (a) original signal and (b) LCT

    表 1  不同类型信号的线性正则分析

    Table 1.  The linear canonical analysis of different types of signals

    变换类型 时域 LCT域 经典频域
    LCT 连续 连续 连续(FT)
    LCS 连续Chirp周期 离散非Chirp周期 离散非周期(FS)
    DTLCT 离散非周期 连续Chirp周期 连续周期(DTFT)
    DLCT 离散Chirp周期 离散Chirp周期 离散周期(DFT)
    下载: 导出CSV

    表 2  3种主要类型DLCT的比较

    Table 2.  Comparison of 3 main types of DLCT

    性质 直接离散LCT 基分解的快速DLCT 算子分解DLCT
    近似连续变换
    是否具有闭合形式
    计算复杂度 O(N2) O(N·logN) O(N·logkN)
    下载: 导出CSV
  • [1]

    Moshinsky M, Quesne C. Linear canonical transformations and their unitary representations[J]. Journal of Mathematical Physics, 1971, 12(8):1772-1780. doi: 10.1063/1.1665805

    [2]

    Collins S A. Lens-system diffraction integral written in terms of matrix optics[J]. Journal of the Optical Society of America, 1970, 60(9):1168-1177. doi: 10.1364/JOSA.60.001168

    [3]

    Ozaktas H M, Zalevsky Z, Kutay M A. The Fractional Fourier Transform:with Applications in Optics and Signal Processing[M]. New York:Wiley, 2001.

    [4]

    Wolf K B. Integral Transforms in Science and Engineering[M]. New York:Plenum, 1979.

    [5]

    Bernardo L M. ABCD matrix formalism of fractional Fourier optics[J]. Optical Engineering, 1996, 35(3):732-740. doi: 10.1117/1.600641

    [6]

    James D F V, Agarwal G S. The generalized Fresnel transform and its application to optics[J]. Optics Communications, 1996, 126(4-6):207-212. doi: 10.1016/0030-4018(95)00708-3

    [7]

    Hua J W, Liu L R, Li G Q. Extended fractional Fourier transforms[J]. Journal of the Optical Society of America A, 1997, 14(12):3316-3322. doi: 10.1364/JOSAA.14.003316

    [8]

    Bastiaans M J. Wigner distribution function and its application to first-order optics[J]. Journal of the Optical Society of America, 1979, 69(12):1710-1716. doi: 10.1364/JOSA.69.001710

    [9]

    Bartelt H O, Brenner K H, Lohmann A W. The wigner distribution function and its optical production[J]. Optics Communications, 1980, 32(1):32-38. doi: 10.1016/0030-4018(80)90308-9

    [10]

    陶然, 齐林, 王越.分数阶Fourier变换的原理与应用[M].北京:清华大学出版社, 2004.

    Tao R, Qi L, Wang Y. Theory and Applications of the Fractional Fourier Transform[M]. Beijing:Tsinghua University Press, 2004.

    [11]

    陶然, 张峰, 王越.分数阶Fourier变换离散化的研究进展[J].中国科学E辑:信息科学, 2008, 38(4):481-503. http://info.scichina.com:8084/sciF/CN/Y2008/V38/I4/481

    Tao R, Zhang F, Wang Y. Research progress on discretization of fractional Fourier transform[J]. Science in China Series F:Information Sciences, 2008, 51(7):859-880. http://info.scichina.com:8084/sciF/CN/Y2008/V38/I4/481

    [12]

    Li B Z, Tao R, Xu T Z, et al. The Poisson sum formulae associated with the fractional Fourier transform[J]. Signal Processing, 2009, 89(5):851-856. doi: 10.1016/j.sigpro.2008.10.030

    [13]

    Lee Q Y, Li B Z, Cheng Q Y. Discrete linear canonical transform of finite chirps[J]. Procedia Engineering, 2012, 29:3663-3667. doi: 10.1016/j.proeng.2012.01.549

    [14]

    Liu S H, Shan T, Tao R, et al. Sparse discrete fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2014, 62(24):6582-6595. doi: 10.1109/TSP.2014.2366719

    [15]

    Kang X J, Zhang F, Tao R. Multichannel random discrete fractional Fourier transform[J]. IEEE Signal Processing Letters, 2015, 22(9):1340-1344. doi: 10.1109/LSP.2015.2402395

    [16]

    Kang X J, Tao R, Zhang F. Multiple-parameter discrete fractional transform and its applications[J]. IEEE Transactions on Signal Processing, 2016, 64(13):3402-3417. doi: 10.1109/TSP.2016.2544740

    [17]

    Wang J, Zhang Y D, Li G J, et al. Computation of the cascaded optical fractional Fourier transform under different variable scales[J]. Optics Communications, 2012, 285(6):997-1000. doi: 10.1016/j.optcom.2011.09.070

    [18]

    Zhong Z, Zhang Y J, Shan M G, et al. Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform[J]. Journal of Optics, 2014, 16(12):125404. doi: 10.1088/2040-8978/16/12/125404

    [19]

    Sejdić E, Djurović I, Stanković L. Fractional Fourier transform as a signal processing tool:an overview of recent developments[J]. Signal Processing, 2011, 91(6):1351-1369. doi: 10.1016/j.sigpro.2010.10.008

    [20]

    李炳照, 陶然, 王越.非均匀采样信号的分数阶数字频谱研究[J].电子学报, 2006, 34(12):2146-2149. doi: 10.3321/j.issn:0372-2112.2006.12.005

    Li B Z, Tao R, Wang Y. Fractional spectrum of non-uniformly sampled signals[J]. Acta Electronica Sinica, 2006, 34(12):2146-2149. doi: 10.3321/j.issn:0372-2112.2006.12.005

    [21]

    Barshan B, Kutay M A, Ozaktas H M. Optimal filtering with linear canonical transformations[J]. Optics Communications, 1997, 135(1-3):32-36. doi: 10.1016/S0030-4018(96)00598-6

    [22]

    Pei S C, Ding J J. Closed-Form discrete fractional and affine Fourier transforms[J]. IEEE Transactions on Signal Processing, 2000, 48(5):1338-1353. doi: 10.1109/78.839981

    [23]

    Ding J J, Pei S C. Additive discrete linear canonical transform and other additive discrete operations[C]//Proceedings of the 2011 9th European Signal Processing Conference, 2011: 2249-2253.https://www.eurasip.org/Proceedings/Eusipco/Eusipco2011/papers/1569423031.pdf

    [24]

    Pei S C, Lai Y C. Discrete linear canonical transforms based on dilated Hermite functions[J]. Journal of the Optical Society of America A, 2011, 28(8):1695-1708. doi: 10.1364/JOSAA.28.001695

    [25]

    Pei S C, Huang S G. Fast discrete linear canonical transform based on CM-CC-CM Decomposition and FFT[J]. IEEE Transactions on Signal Processing, 2016, 64(4):855-866. doi: 10.1109/TSP.2015.2491891

    [26]

    Ding J J, Pei S C, Liu C L. Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform[J]. Journal of the Optical Society of America A, 2012, 29(8):1615-1624. doi: 10.1364/JOSAA.29.001615

    [27]

    Pei S C, Ding J J. Eigenfunctions of linear canonical transform[J]. IEEE Transactions on Signal Processing, 2002, 50(1):11-26. doi: 10.1109/78.972478

    [28]

    Pei S C, Ding J J. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms[J]. Journal of the Optical Society of America A, 2003, 20(3):522-532. doi: 10.1364/JOSAA.20.000522

    [29]

    Ding J J, Pei S C. Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform[J]. Journal of the Optical Society of America A, 2011, 28(2):82-95. doi: 10.1364/JOSAA.28.000082

    [30]

    Pei S C, Ding J J. Two-dimensional affine generalized fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 2001, 49(4):878-897. doi: 10.1109/78.912931

    [31]

    Ding J J, Pei S C. Heisenberg's uncertainty principles for the 2-D nonseparable linear canonical transforms[J]. Signal Processing, 2013, 93(5):1027-1043. doi: 10.1016/j.sigpro.2012.11.023

    [32]

    Pei S C, Huang S G. Two-dimensional nonseparable discrete linear canonical transform based on CM-CC-CM-CC decomposition[J]. Journal of the Optical Society of America A, 2016, 33(2):214-227. doi: 10.1364/JOSAA.33.000214

    [33]

    Pei S C, Huang S G. Reversible joint hilbert and linear canonical transform without distortion[J]. IEEE Transactions on Signal Processing, 2013, 61(19):4768-4781. doi: 10.1109/TSP.2013.2273884

    [34]

    Pei S C, Lai Y C. Derivation and discrete implementation for analytic signal of linear canonical transform[J]. Journal of the Optical Society of America A, 2013, 30(5):987-992. doi: 10.1364/JOSAA.30.000987

    [35]

    Stern A. Sampling of linear canonical transformed signals[J]. Signal Processing, 2006, 86(7):1421-1425. doi: 10.1016/j.sigpro.2005.07.031

    [36]

    Stern A. Why is the linear canonical transform so little known?[C]//Proceedings of the 5th International Workshop on Informational Optics, 2006: 225-234.http://www.ee.bgu.ac.il/~stern/c2006a.pdf

    [37]

    Li B Z, Tao R, Wang Y. New sampling formulae related to linear canonical transform[J]. Signal Processing, 2007, 87(5):983-990. doi: 10.1016/j.sigpro.2006.09.008

    [38]

    Tao R, Li B Z, Wang Y, et al. On sampling of band-limited signals associated with the linear canonical transform[J]. IEEE Transactions on Signal Processing, 2008, 56(11):5454-5464. doi: 10.1109/TSP.2008.929333

    [39]

    Li B Z, Xu T Z. Sampling in the linear canonical transform domain[J]. Mathematical Problems in Engineering, 2012, 2012:504580. http://cn.bing.com/academic/profile?id=09ba004081e108be2f2d566ae6c08578&encoded=0&v=paper_preview&mkt=zh-cn

    [40]

    Shi J, Liu X P, Zhang Q Y, et al. Sampling theorems in function spaces for frames associated with linear canonical transform[J]. Signal Processing, 2014, 98:88-95. doi: 10.1016/j.sigpro.2013.11.013

    [41]

    许天周, 李炳照.线性正则变换及其应用[M].北京:科学出版社, 2013.

    [42]

    邓兵, 陶然, 王越.线性正则变换的卷积定理及其应用[J].中国科学E辑:信息科学, 2007, 37(4):544-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce200704006

    Deng B, Tao R, Wang Y. Convolution theorems for the linear canonical transform and their applications[J]. Science in China Series F:Information Sciences, 2006, 49(5):592-603. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce200704006

    [43]

    Healy J J, Kutay M A, Ozaktas H M, et al. Linear Canonical Transforms:Theory and Applications[M]. New York:Springer, 2016.

    [44]

    Xu G L, Wang X T, Xu X G. Three uncertainty relations for real signals associated with linear canonical transform[J]. IET Signal Processing, 2009, 3(1):85-92. doi: 10.1049/iet-spr:20080019

    [45]

    Zhang Z C. Unified Wigner-Ville distribution and ambiguity function in the linear canonical transform domain[J]. Signal Processing, 2015, 114:45-60. doi: 10.1016/j.sigpro.2015.02.016

    [46]

    Bai R F, Li B Z, Cheng Q Y. Wigner-Ville distribution associated with the linear canonical transform[J]. Journal of Applied Mathematics, 2012, 2012:740161. http://cn.bing.com/academic/profile?id=0a1819c3daa60ea4248fd6b4288a1a78&encoded=0&v=paper_preview&mkt=zh-cn

    [47]

    Che T W, Li B Z, Xu T Z. The ambiguity function associated with the linear canonical transform[J]. Eurasip Journal on Advances in Signal Processing, 2012, 2012:138. doi: 10.1186/1687-6180-2012-138

    [48]

    Guo Y, Li B Z. Blind image watermarking method based on linear canonical wavelet transform and QR decomposition[J]. IET Image Processing, 2016, 10(10):773-786. doi: 10.1049/iet-ipr.2015.0818

    [49]

    Xu X N, Li B Z, Ma X L. Instantaneous frequency estimation based on the linear canonical transform[J]. Journal of the Franklin Institute, 2012, 349(10):3185-3193. doi: 10.1016/j.jfranklin.2012.09.014

    [50]

    Song Y E, Zhang X Y, Shang C H, et al. The Wigner-Ville distribution based on the linear canonical transform and its applications for QFM signal parameters estimation[J]. Journal of Applied Mathematics, 2014, 2014:516457. http://cn.bing.com/academic/profile?id=c11bf2022959780034db7ff81e9eec3d&encoded=0&v=paper_preview&mkt=zh-cn

    [51]

    Goel N, Singh K, Saxena R, et al. Multiplicative filtering in the linear canonical transform domain[J]. IET Signal Processing, 2016, 10(2):173-181. doi: 10.1049/iet-spr.2015.0035

    [52]

    Feng Q, Li B Z. Convolution and correlation theorems for the two-dimensional linear canonical transform and its applications[J]. IET Signal Processing, 2016, 10(2):125-132. doi: 10.1049/iet-spr.2015.0028

    [53]

    Yu Y X, Wang C Y, Chen Y, et al. A fast algorithm of linear canonical transformation for radar signal processing system[J]. Advanced Materials Research, 2014, 1049-1050:1245-1248. doi: 10.4028/www.scientific.net/AMR.1049-1050

    [54]

    Ding J J, Pei S C. Linear canonical transform[J]. Advances in Imaging and Electron Physics, 2014, 186:39-99. doi: 10.1016/B978-0-12-800264-3.00002-2

    [55]

    Qiu W, Li B Z, Li X W. Speech recovery based on the linear canonical transform[J]. Speech Communication, 2013, 55(1):40-50. doi: 10.1016/j.specom.2012.06.002

    [56]

    Ozaktas H M, Arikan O, Kutay M A. Digital computation of the fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 1996, 44(9):2141-2150. doi: 10.1109/78.536672

    [57]

    Hennelly B M, Sheridan J T. Fast numerical algorithm for the linear canonical transform[J]. Journal of the Optical Society of America A, 2005, 22(5):928-937. doi: 10.1364/JOSAA.22.000928

    [58]

    Hennelly B M, Sheridan J T. Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms[J]. Journal of the Optical Society of America A, 2005, 22(5):917-927. doi: 10.1364/JOSAA.22.000917

    [59]

    Bultheel A, Sulbaran H E M. Computation of the fractional Fourier transform[J]. Applied and Computational Harmonic Analysis, 2004, 16(3):182-202. doi: 10.1016/j.acha.2004.02.001

    [60]

    Bultheel A, Sulbaran H E M. Recent developments in the theory of the fractional Fourier and linear canonical transforms[J]. Bulletin of the Belgian Mathematical Society, Simon Stevin, 2006, 13(5):971-1005. https://www.researchgate.net/profile/Adhemar_Bultheel/publication/29655469_Recent_developments_in_the_theory_of_the_fractional_Fourier_and_linear_canonical_transforms/links/0a85e535919e27b189000000.pdf

    [61]

    Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 1998, 46(12):3206-3219. doi: 10.1109/78.735297

    [62]

    Erseghe T, Laurenti N, Cellini V. A multicarrier architecture based upon the affine Fourier transform[J]. IEEE Transactions on Communications, 2005, 53(5):853-862. doi: 10.1109/TCOMM.2005.847162

    [63]

    Oktem F S, Ozaktas H M. Exact relation between continuous and discrete linear canonical transforms[J]. IEEE Signal Processing Letters, 2009, 16(8):727-730. doi: 10.1109/LSP.2009.2023940

    [64]

    Erseghe T, Kraniauskas P, Carioraro G. Unified fractional Fourier transform and sampling theorem[J]. IEEE Transactions on Signal Processing, 1999, 47(12):3419-3423. doi: 10.1109/78.806089

    [65]

    Wei D Y, Ran Q W, Li Y M. Sampling of bandlimited signals in the linear canonical transform domain[J]. Signal, Image and Video Processing, 2013, 7(3):553-558. doi: 10.1007/s11760-011-0258-0

    [66]

    Wei D Y, Li Y M. Sampling and series expansion for linear canonical transform[J]. Signal, Image and Video Processing, 2014, 8(6):1095-1101. doi: 10.1007/s11760-014-0638-3

    [67]

    Wei D Y, Li Y M. The dual extensions of sampling and series expansion theorems for the linear canonical transform[J]. Optik -International Journal for Light and Electron Optics, 2015, 126(24):5163-5167. doi: 10.1016/j.ijleo.2015.09.226

    [68]

    Zhao J, Tao R, Wang Y. Sampling rate conversion for linear canonical transform[J]. Signal Processing, 2008, 88(11):2825-2832. doi: 10.1016/j.sigpro.2008.06.008

    [69]

    Oktem F S, Ozaktas H M. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product:a generalization of the space-bandwidth product[J]. Journal of the Optical Society of America A, 2010, 27(8):1885-1895. doi: 10.1364/JOSAA.27.001885

    [70]

    Healy J J, Sheridan J T. Cases where the linear canonical transform of a signal has compact support or is band-limited[J]. Optics Letters, 2008, 33(3):228-230. doi: 10.1364/OL.33.000228

    [71]

    Zhao L, Healy J J, Sheridan J T. Unitary discrete linear canonical transform:analysis and application[J]. Applied Optics, 2013, 52(7):C30-C36. doi: 10.1364/AO.52.000C30

    [72]

    Ding J J. Research of fractional Fourier transform and linear canonical transform[D]. Taipei: National Taiwan University, 2001.

    [73]

    Healy J J, Sheridan J T. Sampling and discretization of the linear canonical transform[J]. Signal Processing, 2009, 89(4):641-648. doi: 10.1016/j.sigpro.2008.10.011

    [74]

    Healy J J, Sheridan J T. New fast algorithm for the numerical computation of quadratic-phase integrals[J]. Proceedings of SPIE, 2006, 6313:63130J. doi: 10.1117/12.680698

    [75]

    Healy J J, Sheridan J T. Applications of fast algorithms for the numerical calculation of optical signal transforms[J]. Proceedings of SPIE, 2006, 6187:618713. doi: 10.1117/12.662446

    [76]

    Healy J J, Sheridan J T. Time division fast linear canonical transform[C]//Proceedings of 2006 IET Irish Signals and Systems Conference, 2006: 135-138.

    [77]

    Healy J J, Sheridan J T. Fast linear canonical transforms[J]. Journal of the Optical Society of America A, 2010, 27(1):21-30. doi: 10.1364/JOSAA.27.000021

    [78]

    Duhamel P. Implementation of " Split-radix" FFT algorithms for complex, real, and real-symmetric data[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(2):285-295. doi: 10.1109/TASSP.1986.1164811

    [79]

    Duhamel P, Vetterli M. Fast fourier transforms:a tutorial review and a state of the art[J]. Signal Processing, 1990, 19(4):259-299. doi: 10.1016/0165-1684(90)90158-U

    [80]

    Lohmann A W, Dorsch R G, Mendlovic D, et al. Space-bandwidth product of optical signals and systems[J]. Journal of the Optical Society of America A, 1996, 13(3):470-473. doi: 10.1364/JOSAA.13.000470

    [81]

    Qian S E, Chen D P. Decomposition of the Wigner-Ville distribution and time-frequency distribution series[J]. IEEE Transactions on Signal Processing, 1994, 42(10):2836-2842. doi: 10.1109/78.324750

    [82]

    Cohen L. Time-frequency Analysis[M]. Englewood Cliffs, NJ:Prentice-Hall, 1995.

    [83]

    Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations[J]. IEEE Signal Processing Magazine, 1992, 9(2):21-67. doi: 10.1109/79.127284

    [84]

    Li Y G, Li B Z, Sun H F. Uncertainty principles for Wigner-Ville distribution associated with the linear canonical transforms[J]. Abstract and Applied Analysis, 2014, 2014:470459. http://cn.bing.com/academic/profile?id=c8ce8dd6111e62eaff59d1af4cb0bb18&encoded=0&v=paper_preview&mkt=zh-cn

    [85]

    Yan J P, Li B Z, Chen Y H, et al. Wigner distribution moments associated with the linear canonical transform[J]. International Journal of Electronics, 2013, 100(4):473-481. doi: 10.1080/00207217.2012.713018

    [86]

    Zayed A L. On the relationship between the Fourier and fractional fourier transforms[J]. IEEE Signal Processing Letters, 1996, 3(12):310-311. doi: 10.1109/97.544785

    [87]

    Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation. Ⅱ[J]. Journal of the Optical Society of America A, 1993, 10(12):2522-2531. doi: 10.1364/JOSAA.10.002522

    [88]

    Ozaktas H M, Mendlovic D. Fractional Fourier optics[J]. Journal of the Optical Society of America A, 1995, 12(4):743-751. doi: 10.1364/JOSAA.12.000743

    [89]

    Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms[J]. Journal of the Optical Society of America A, 1994, 11(2):547-559. doi: 10.1364/JOSAA.11.000547

    [90]

    Irfan M, Zheng L Y, Shahzad H. Review of computing algorithms for discrete fractional Fourier transform[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(11):1911-1919. doi: 10.19026/rjaset.6.3804

    [91]

    Ko A, Ozaktas H M, Candan C, et al. Digital computation of linear canonical transforms[J]. IEEE Transactions on Signal Processing, 2008, 56(6):2383-2394. doi: 10.1109/TSP.2007.912890

    [92]

    Crochiere R E, Rabiner L R. Interpolation and decimation of digital signals-A tutorial review[J]. Proceedings of the IEEE, 1981, 69(3):300-331. doi: 10.1109/PROC.1981.11969

    [93]

    Valenzuela R A, Constantinides A G. Digital signal processing schemes for efficient interpolation and decimation[J]. IEE Proceedings G-Electronic Circuits and Systems, 1983, 130(6):225-235. doi: 10.1049/ip-g-1.1983.0044

    [94]

    Samantaray L, Panda R. Signal decimation and interpolation in fractional domain using non-linear basis functions[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2013, 6(4):415-430. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.399.8257

    [95]

    Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90):297-301. doi: 10.1090/S0025-5718-1965-0178586-1

    [96]

    Cochran W, Cooley J, Favin D, et al. What is the fast Fourier transform?[J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2):45-55. doi: 10.1109/TAU.1967.1161899

    [97]

    Kelly D P. Numerical calculation of the Fresnel transform[J]. Journal of the Optical Society of America A, 2014, 31(4):755-764. doi: 10.1364/JOSAA.31.000755

    [98]

    Kelly D P, Hennelly B M, Rhodes W T, et al. Numerical implementation of the Fresnel transform, and its application in linear optical systems[J]. Proceedings of SPIE, 2005, 5908:59080F. http://cn.bing.com/academic/profile?id=cd4ebf32eb5b5d96e503ff883bab552b&encoded=0&v=paper_preview&mkt=zh-cn

    [99]

    Falconer D G, Winthrop J T. Fresnel transform spectroscopy[J]. Physics Letters, 1965, 14(3):190-191. doi: 10.1016/0031-9163(65)90580-9

    [100]

    Lang J, Tao R, Wang Y. The discrete multiple-parameter fractional Fourier transform[J]. Science China(Information Sciences), 2010, 53(11):2287-2299. https://link.springer.com/article/10.1007%2Fs11432-010-4095-5

    [101]

    Deng X G, Bihari B, Gan J H, et al. Fast algorithm for chirp transforms with zooming-in ability and its applications[J]. Journal of the Optical Society of America A, 2000, 17(4):762-771. doi: 10.1364/JOSAA.17.000762

    [102]

    Ran Q W, Zhang H Y, Zhang Z Z, et al. The analysis of the discrete fractional Fourier transform algorithms[C]//Electrical and Computer Engineering, 2009. CCECE '09. Canadian, 2009: 979-982.https://www.researchgate.net/publication/221280085_The_analysis_of_the_discrete_fractional_Fourier_transform_algorithms

    [103]

    Deng X G, Li Y P, Fan D Y, et al. A fast algorithm for fractional Fourier transforms[J]. Optics Communications, 1997, 138(4-6):270-274. doi: 10.1016/S0030-4018(97)00057-6

    [104]

    Serbes A, Durak-Ata L. The discrete fractional Fourier transform based on the DFT matrix[J]. Signal Processing, 2011, 91(3):571-581. doi: 10.1016/j.sigpro.2010.05.007

    [105]

    Narayanan V A, Prabhu K M M. The fractional Fourier transform:theory, implementation and error analysis[J]. Microprocessors and Microsystems, 2003, 27(10):511-521. doi: 10.1016/S0141-9331(03)00113-3

    [106]

    Sypek M. Light propagation in the Fresnel region. New numerical approach[J]. Optics Communications, 1995, 116(1-3):43-48. doi: 10.1016/0030-4018(95)00027-6

    [107]

    Mendlovic D, Zalevsky Z, Konforti N. Computation considerations and fast algorithms for calculating the diffraction integral[J]. Journal of Modern Optics, 1997, 44(2):407-414. doi: 10.1080/09500349708241880

    [108]

    Rhodes W T. Numerical simulation of Fresnel-regime wave propagation:the light-tube model[J]. Proceedings of SPIE, 2001, 4436:21-26. doi: 10.1117/12.451302

    [109]

    Nazarathy M, Shamir J. First-order optics-a canonical operator representation:lossless systems[J]. Journal of the Optical Society of America, 1982, 72(3):356-364. doi: 10.1364/JOSA.72.000356

    [110]

    Papoulis A. Signal Analysis[M]. New York:McGraw Hill, 1977.

    [111]

    García J, Mas D, Dorsch R G. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm[J]. Applied Optics, 1996, 35(35):7013-7018. doi: 10.1364/AO.35.007013

    [112]

    Marinho F J, Bernardo L M. Numerical calculation of fractional Fourier transforms with a single fast-Fourier-transform algorithm[J]. Journal of the Optical Society of America A, 1998, 15(8):2111-2116. doi: 10.1364/JOSAA.15.002111

    [113]

    Mas D, Garcia J, Ferreira C, et al. Fast algorithms for free-space diffraction patterns calculation[J]. Optics Communications, 1999, 164(4-6):233-245. doi: 10.1016/S0030-4018(99)00201-1

    [114]

    赵兴浩, 邓兵, 陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报, 2005, 25(4):360-364. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200504019.htm

    Zhao X H, Deng B, Tao R. Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4):360-364. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200504019.htm

    [115]

    Alieva T, Bastiaans M J. Alternative representation of the linear canonical integral transform[J]. Optics Letters, 2005, 30(24):3302-3304. doi: 10.1364/OL.30.003302

    [116]

    Bastiaans M J, Alieva T. Synthesis of an arbitrary ABCD system with fixed lens positions[J]. Optics Letter, 2006, 31(16):2414-2416. doi: 10.1364/OL.31.002414

    [117]

    Tao R, Liang G P, Zhao X H. An efficient FPGA-based implementation of fractional Fourier transform algorithm[J]. Journal of Signal Processing Systems, 2010, 60(1):47-58. doi: 10.1007/s11265-009-0401-0

    [118]

    Yang X P, Tan Q F, Wei X F, et al. Improved fast fractional-Fourier-transform algorithm[J]. Journal of the Optical Society of America A, 2004, 21(9):1677-1681. doi: 10.1364/JOSAA.21.001677

    [119]

    Pei S C, Lai Y C. Signal scaling by centered discrete dilated hermite functions[J]. IEEE Transactions on Signal Processing, 2012, 60(1):498-503. doi: 10.1109/TSP.2011.2171687

    [120]

    Koc A, Ozaktas H M, Hesselink L. Fast and accurate algorithms for quadratic phase integrals in optics and signal processing[J]. Proceedings of SPIE, 2011, 8043:804304. doi: 10.1117/12.884676

    [121]

    Ozaktas H M, Koc A, Sari I, et al. Efficient computation of quadratic-phase integrals in optics[J]. Optics Letters, 2006, 31(1):35-37. doi: 10.1364/OL.31.000035

    [122]

    Healy J J, Kutay M A, Ozaktas H M, et al. Linear Canonical Transforms: Theory and Applications[M]. New York:Springer, 2016.

    [123]

    Healy J J, Sheridan J T. Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms[J]. Optics Letters, 2010, 35(7):947-949. doi: 10.1364/OL.35.000947

    [124]

    Campos R G, Figueroa J. A fast algorithm for the linear canonical transform[J]. Signal Processing, 2011, 91(6):1444-1447. doi: 10.1016/j.sigpro.2010.07.007

    [125]

    Campos R G, Juárez L Z. A discretization of the continuous fourier transform[J]. Nuovo Cimento B (1971-1996), 1992, 107(6):703-711. doi: 10.1007/BF02723177

    [126]

    Zhang W L, Li B Z, Cheng Q Y. A new discretization algorithm of linear canonical transform[J]. Procedia Engineering, 2012, 29:930-934. doi: 10.1016/j.proeng.2012.01.066

    [127]

    Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3):241-265. doi: 10.1093/imamat/25.3.241

    [128]

    Wei D Y, Wang R K, Li Y M. Random discrete linear canonical transform[J]. Journal of the Optical Society of America A, 2016, 33(12):2470-2476. doi: 10.1364/JOSAA.33.002470

    [129]

    Zhang F, Tao R, Wang Y. Discrete linear canonical transform computation by adaptive method[J]. Optics Express, 2013, 21(15):18138-18151. doi: 10.1364/OE.21.018138

    [130]

    Wolf K B. Canonical transforms. I. Complex linear transforms[J]. Journal of Mathematical Physics, 1974, 15(8):1295-1301. doi: 10.1063/1.1666811

    [131]

    Wolf K B. Canonical transforms. Ⅱ. Complex radial transforms[J]. Journal of Mathematical Physics, 1974, 15(12):2102-2111. doi: 10.1063/1.1666590

    [132]

    Kramer P, Moshinsky M, Seligman T H. Complex extensions of canonical transformations and quantum mechanics[M]//Inui E, Tanabe Y, Onodera Y. Group Theory and Its Applications. New York: Academic Press, 1975: 249-332.

    [133]

    Ko A, Ozaktas H M, Hesselink L. Fast and accurate algorithm for the computation of complex linear canonical transforms[J]. Journal of the Optical Society of America A, 2010, 27(9):1896-1908. doi: 10.1364/JOSAA.27.001896

    [134]

    Liu C G, Wang D Y, Healy J J, et al. Digital computation of the complex linear canonical transform[J]. Journal of the Optical Society of America A, 2011, 28(7):1379-1386. doi: 10.1364/JOSAA.28.001379

    [135]

    Pei S C, Huang S G. Fast and accurate computation of normalized Bargmann transform[J]. Journal of the Optical Society of America A, 2017, 34(1):18-26. doi: 10.1364/JOSAA.34.000018

    [136]

    Fan H Y, Chen J H. EPR entangled state and generalized Bargmann transformation[J]. Physics Letters A, 2002, 303(5-6):311-317. doi: 10.1016/S0375-9601(02)01312-9

    [137]

    Abreu Lís D. Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions[J]. Applied and Computational Harmonic Analysis, 2010, 29(3):287-302. doi: 10.1016/j.acha.2009.11.004

    [138]

    Zayed A I. Chromatic expansions and the bargmann transform[M]//Shen X P, Zayed A I. Multiscale Signal Analysis and Modeling. New York: Springer, 2013.

  • 加载中

(2)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-12-13
修回日期:  2018-03-02
刊出日期:  2018-06-01

目录

/

返回文章
返回