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Abstract: The installation of binocular vision at the end of a manipulator reduces its availability in environments with
obstacles. To deal with the problem, this study puts forward a target localization method using a laser and the mo-
nocular hand-eye vision. In the proposed method, the centre of the laser spot is obtained by the hand-eye vision, and
the geometric relations among the laser emission point, light-spot and the optical axis of the camera are used to
calculate the distance. Then, the D-H method is employed to construct the coordinate conversion system, so that the
location of the target can be calculated. The measuring precision is negatively correlated with the distance, and it is
suitable for the measurement in medium or short distance. Compared with the commonly used binocular measure-
ment methods, the proposed method uses fewer cameras, which reduces the width of the measurement system on
manipulators, and makes it more applicable to narrow workspace. Moreover, it also improves the effective load ca-
pacity of manipulators.
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Frame definitions of the Powercube manipulator
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Table 1 Kinematic parameters of the Powercube manipulator

Frame a/(°) aim diim wi(°)
2o/ 21 O a,1=0.125 d4=0.135 -90
%/% 4+90 0 0 -90
/23 65+180 0 d3=0.339 -90
/% 64-90 a4=0.175 0 0
2l 25 05+90 0 0 -90
35/ % 0 0 0p=0.195 180
26/ o 0 d7=0.05 0
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Fig. 5 3D localization system on Powercube
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Table 2 Errors in this measurement system

margin

Distance/mm Emargin/MM Ad% D,/mm Distance/mm Emargin/MM Ad% D/mm
50 1.2 2.40 0.08 300 1.7 3.90 2.04
60 1.6 2.67 0.1 350 13.8 3.94 3.47
70 2.1 3.00 0.15 400 17.3 4.33 5.89
80 2.6 3.25 0.19 450 20.6 4.58 8.56
90 3.4 3.78 0.28 500 23.1 4.62 10.08
100 4.5 4.50 0.52 600 28.2 4.70 24.81
110 4.8 4.36 0.37 800 35.9 4.49 70.46
120 5.1 4.25 0.38 1000 411 4.1 131.73
130 5.4 4.15 0.47 1300 67.4 5.18 146.28
140 5.6 4.00 0.51 1600 85.7 5.36 159.16
150 5.9 3.93 0.33 2000 12 5.60 164.75
200 8.3 4.15 1.85 10000 \ \ \
250 10.6 4.24 1.94
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Fig. 7 The error varies with the distance of target
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Fig. 8 Relative error varies with the distance of target
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Table 3 Comparison between the method and binocular location

Binocular method This method
Device width/mm >150 70
Price/RMB 3000 200
Weight/g >400 160
Applicability Broad space Narrow space

Error for 300 mm
Error for 500 mm
Error for 700 mm

Error for 1000 mm

0.49
0.80
0.98
1.20

1.7
23.1
28.6
411
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Overview: Over the past decade, vision-based positioning technology has attracted more and more attentions, and has
been widely used in robotics. Binocular vision is often installed at the end of a manipulator, which is used to get the po-
sition and the orientation information of targets. However, the installation of binocular vision reduces the flexibility and
the load capacity of a manipulator. This problem becomes more obvious, when the load capacity of a manipulator is low
or the working space is narrow. Moreover, the price of binocular vision is still relatively high. To deal with the problem
above, this study puts forward a target localization method using a laser and a monocular hand-eye vision. The lower
priced laser equipment used in this study can only send out a light beam, and cannot measure the distance indepen-
dently. The hand-eye vision system is used to obtain the centre of the laser spot. The geometric relations among the la-
ser emission point, light-spot and the optical axis of the camera are applied to calculate the distance from the target
point to the laser emitter. The Denavit-Hartenberg convention (D-H) is often used to calculate the position and the
orientation of links and joints in robotics. The distance from the target point to the laser emitter can be considered as an
extended link of the manipulator. Under this assumption, the D-H method can be employed to construct the coordinate
conversion system, which contains the beam of the laser and the mechanical manipulator. With this coordinate conver-
sion system, the location of the target can be calculated. The coordinate measuring precision is negatively correlated
with the distance, and it is suitable for the position measurement of medium and short distance. When a target is far
away, the error is too large that it cannot work effectively. The light illuminations in the working environment have an
impact on the laser spot taken by the camera. Compared with the commonly used binocular measurement methods, the
proposed method uses only one camera, which reduces the width of the measurement system on manipulators, and
makes it more suitable for working in narrow workspace. When searching for an object with a mobile robot, the arm is
often required to enter a hole or a narrow gap. The method proposed in this paper is especially suitable for the above
case. Moreover, this design also reduces the weight of the sensor on the manipulator that improves the effective load
capacity of manipulators.
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