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Abstract: A 2 kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) has been 
demonstrated by employing bidirectional-pump scheme. 2.009 kW signal power is obtained when pump power is 
2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m 
delivery fiber with core/inner cladding diameter of 20 m/400 m. The beam quality M2

≤1.2 and the spectral FWHM 
bandwidth is 4.34 nm. There is no transverse mode instability and the output power stability of ±0.14% is achieved 
by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber. 
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1 Introduction 
In the last decades, high power single-mode and multi-
mode fiber lasers have been used in many industry fields 
such as welding and cutting [1]. The output powers of fiber 
lasers have also increased remarkably [2–9]. But, transverse 
mode instability (TMI) has been found when the power 
scaling of the single-mode fiber lasers is above 2 kW[10-14]. 
The fiber nonlinear effect, especially the stimulated Ra-
man scattering (SRS), also limits the power scaling of 
continue-wave single-mode fiber laser and causes the 
output power instability of the fiber laser. Pho-
to-darkening (PD) is also found in Yb-doped high power 
fiber laser, which can cause the decrease of output power, 
long term stability and operation life of the fiber laser. 
Koponen has observed a seventh-order dependence of 
the PD rate on the excited-state Yb concentration for two 
different fibers. This result implies that PD of an 
Yb-doped fiber source fabricated using a particular fiber 
will be strongly dependent on the Yb inversion rate[15,16] 
and lower inversion rate can be obtained by using 976 nm 
pump light as compared to 915 nm. Therefore, 976 nm 
pump LDs are used in our fiber laser system to obtain 

lower inversion rate to decrease PD. Besides, a more uni-
form pump energy distribution at both ends of gain fiber 
can be realized by bidirectional pumping compare to 
co-pumping and it is also beneficial to obtain lower in-
version rate to decrease PD. 

We demonstrated a single-mode fiber laser employing 
bidirectional-976 nm pump scheme, and high SRS sup-
pression and remarkable power stability are demonstrat-
ed without any TMI. 

2 Experimental setup  
The experimental setup of bidirectional-976 nm pumped 
all fiber laser is presented in Fig. 1. 250 W wavelength 
stabilized 976 nm laser diodes of DILAS company are 
used for backward-pumping and forward and backward 
combiners are used to combine the bidirection-
al-pumping light into the inner cladding of the double 
cladding fibers with a diameter of 400 m and a numeri-
cal aperture of 0.46. The 7 × 1 pump combiner is adopted 
as the forward-pump combiner and the pump light is 
launched into the double-cladding fiber (DCF) through 
the high reflective fiber Bragg grating (HR FBG) of ITF 
with operating wavelength 1080.06 nm, FWHM 1.96 nm 
and 99.6% reflectivity. A (6 + 1) × 1 signal/pump com-
biner is used as the backward-pump combiner, and the 
backward-pump light was coupled into the OC FBG of 
ITF company with operating wavelength 1079.96 nm, 
FWHM 1.03 nm and 9.6% reflectivity. The signal fiber of 
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the (6+1)×1 signal/pump combiner is DCF with a core 
diameter/NA of 20 m/0.064, and the cladding diameters 
of input and output signal fiber are 400 m and 250 m, 
respectively. The gain fiber is double-cladding Yb-doped 
fiber (DCYDF) with a core diameter/NA of 20 m/0.064. 
Yb-doped fiber (YDF) we have adopted has an absorp-
tion coefficient ~1.6 dB/m at 976 nm and the length is set 
to be ~20 m. After the backward (6 + 1) ×1 signal/pump 
combiner, about 10 m delivery fiber with core/inner 
cladding diameter of 20 m/400 m, is spliced, an QBH 
fiber optic cable of optoskand is used and two cascade 
homemade CLSs are adopted to strip cladding lights to 
get a good beam quality ( 2M <1.2). Output signal spec-
trum and beam quality at the maximum power are 
measured and recorded.  

3 Results and discussion 
The signal power vs. pump power (S-P) performance, 
beam distribution and quality, output spectrum and out-
put power temporal characteristic of the fiber laser with 
bidirectional-pumping configuration were measured and 
recorded. The forward-pump is firstly utilized and then 
backward-pumping is utilized to further scale the output 
power of the laser oscillator. Besides, the performance of 
the homemade CLS used in the 2 kW system is described. 

3.1 Output characteristics 
Fig. 2 shows the maximum output power measured by 
5000-BB-V1 of Ophir VEGA and 2.009 kW was recorded 
when the temperature of the cooling water was set at 

Fig. 2  Maximum output power measured by 

5000-BB-V1 of Ophir VEGA. 

Fig. 3  Output power versus pump power, and beam profile at 

focal point. 
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Fig. 4  2D and 3D beam display at maximum output power.
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Fig. 1  Setup of bidirectional-976 nm pumped all-fiber laser.
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25 ℃. S-P performance is shown in Fig. 3 and a slop 
efficiency 76.6% is obtained at maximum output power 
with maximum temperature below 60 ℃. Because the 
forward pump LDs are non-wavelength-stability (without 
external volume Bragg gratings for wavelength stabiliza-
tion)[17], the forward signal power is first utilized up to 
928 W at current 30.5 A , and then backward-pump pow-
er is added to further scale the output power of the laser 
oscillator above 2 kW at current 34 A. Beam distribution 
and quality were measured by BeamWatch of Ophir 
which used to detect the above 1 kW high power fiber 
laser specialized. The 2D and 3D beam displays were 
shown in Fig. 4 and the beam quality 2M  at x and y 
axes are both below 1.2. 

3.2 Output spectrum and temporal characteristic 
Fig. 5 shows the output signal spectrum and the Raman 
Stokes light is less than -47 dB below the signal power at 
the maximum power of 2.009 kW even with a 10-m 20 
m/400 m delivery DCF. There is no obvious residual 
pump power because of two cascades homemade CLSs 
adopted. For obtaining a good beam quality, delivery 
fiber with core diameter of 20 m and NA 0.064 is used, 
and self-phase modulation (SPM) is observed when high 
power laser is passing along 10 m power delivery fibers. 
Meanwhile, the temporal characteristic at maximum 
output power is recorded by 5000-BB-V1 of Ophir VEGA 
in 5 mins as shown in Fig. 6 and ±0.14% power fluctua-
tion is demonstrated. By using a special thermal man-

Fig. 7  (a) The picture of the encapsulated CLS. (b) The 

picture of the surface of CLS after abrading. 

Fig. 8  Residual pump power when 209.4 W pump power 

goes through the homemade CLS. 

(a) 

(b) 

Fig. 9  (a) Temperature of CLS when 209.4 W pump power goes through. (b) Residual pump power output from the 

CLS vs. input pump power 209.4 W. 
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Fig. 5  Laser output spectra at the maximum output 

power (P=2.008 kW). 

Fig. 6  Laser output temporal characteristic at the  

maximum output power. 
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agement to make the temperature distribution of 
Yb-doped gain fiber uniform, a long term power stability 
can be achieved and no TMI is found in the bidirection-
al-pumping scheme at 2 kW. 

3.3 Performance of the CLS 
A homemade CLS with high cladding loss is used in the 2 
kW fiber laser, which is fabricated directly on the output 
signal fiber with 250 m cladding diameter of (6+1)1 
pump and signal combiner. The fiber is stripped in the 
middle with a length of 6.5 cm and a mechanical method 
and homemade equipment were used to grind and polish 
the bare fiber to obtain a smaller cladding and rough 
surface. Cladding lights leaks out because of the dissatis-
faction of the total reflection condition. Figs. 7(a) and 7(b) 
show the picture of the encapsulated CLS and the surface 
of CLS after abraded. Fig. 8 shows the residual pump 
power when 209.4 W pump power goes through the ho-
memade CLS without any air cooling or water cooling 
and the cladding loss is greater than 23.7 dB for a 6.5 cm 
fiber length with the temperature below 50 ℃(as shown 
in Fig. 9(a)). As shown in Fig. 9(a), there is an optimal 
fiber length for CLS and most of cladding power has been 
stripped during a length of about 4 cm. A 200 W sin-
gle-mode 1 m all-fiber laser was coupled into the signal 
port of a (6+1) fiber combiner to test the core loss of the 
CLS and no loss was found at the output of the CLS. Only 
a few micrometer of the fiber cladding surface has a me-
chanical process without any damage on the core, there-
fore the light confined in the core has no loss when 
propagating along the fiber. The insert loss only depends 
on the splicing loss which is lower than 0.1 dB. Therefore, 
no residual pump and signal light propagating in the in-
ner cladding can be guaranteed by such two cascades 
homemade CLSs. Fig. 9(b) gives the data of the residual 
pump power output from the CLS when the maximum 
pump power 209.4 W is input.  

4 Conclusions 
A bidirectional-pumped Yb-doped all-fiber laser oscilla-
tor with two cascades homemade CLSs was constructed 
and the laser performances, such as S-P curve, beam 
quality and distribution, output spectrum and temporal 
characteristic, are investigated respectively. By employing 
bidirectional-pump, signal output power is further scaled 
to 2 kW with a slope efficiency of 76.6%, and the Raman 
Stokes light is ~47 dB below the signal power even with a 
10-m 20 m/400 m delivery DCF. The beam quality 

2M  is below 1.2 and no residual pump and cladding 
light are observed. Remarkable power stability (<±0.14%) 
is also demonstrated because of more uniform tempera-
ture distribution on Yb-doped gain fiber by a special 
thermal management. 
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