Analysis of curvature radius adjustment capability of large aperture ULE segmented mirror
-
摘要
针对未来大口径分块光学系统在轨变构重构问题,提出一种大范围曲率可调的轻量化设计方法。首先分析了压电陶瓷材料特性与热应变本构方程之间的关系,推导出压电应变可以由热应变精确等效,并根据挠性曲线方程解算出压电陶瓷变形量,由此实现对边距离为510 mm、曲率半径为9000 mm的ULE (ultra low expansion glass)分块镜参数化建模。仿真结果表明:54个交错式促动器在±20 V控制电压区间可实现分块镜曲率半径变构240.07 mm且呈高度线性变化关系。相关实验结果表明:控制电压在-25~20 V区间变化时,分块镜曲率半径变化量达223.44 mm,并且正向单位电压对应曲率半径变化量较负向大。本文提出的大范围曲率可调分块镜可为后续大口径分块光学在轨变构重构的工程化应用提供新的思路。
Abstract
In response to the on-orbit reconfiguration challenges faced by future large aperture segmented optical systems, a lightweight design method with a wide range of curvature adjustability is proposed. This study initially analyzes the relationship between the characteristics of piezoelectric ceramics and the constitutive equations of thermal strain, deducing that piezoelectric strain can be precisely equivalent to thermal strain. Based on the flexural curve equation, the deformation of piezoelectric ceramics is calculated, enabling the parameterized modeling of an ultra-low expansion (ULE) glass segmented mirror with an edge distance of 510 mm and a curvature radius of 9000 mm. Simulation results indicate that 54 interlaced actuators can achieve a curvature radius reconfiguration of 240.07 mm with a control voltage range of ±20 V, exhibiting a highly linear relationship. Experimental results further demonstrate that when the control voltage is varied between -25 V and 20 V, the change in the curvature radius of the segmented mirror reaches 233.44 mm, with the positive unit voltage corresponding to a greater change in curvature radius than the negative. The proposed method for a wide range of curvature adjustable segmented mirrors provides new insights for the engineering application of large aperture segmented optics in on-orbit reconfiguration.
-
Key words:
- segmented mirror /
- curvature radius /
- piezoelectric ceramics /
- actuator /
- active control
-
Overview
Overview: With the increasing trend of global space resource development and the intensification of future space warfare, particularly the establishment of the Space Force by the United States in 2018, space is poised to become a new battlefield. Future large-scale space optical facilities for military applications face greater threats of being targeted and destroyed in warfare. There is an urgent need for large optical imaging systems to enhance their resistance to damage and their ability to be reconstructed after being hit. Additionally, traditional space optical facilities have singular and non-adjustable in-orbit detection functions, which can no longer meet the growing diverse needs of users. There is an urgent need to develop a new type of reconfigurable space optical system capable of in-orbit adjustment and detection.
This paper adopts a design concept of adjustable parameters for single modules and variable shapes for multiple modules. Focusing on the problem of in-orbit reconfiguration of large-aperture segmented optical systems, we propose a lightweight design method with a wide range of curvature adjustability. We first analyzed the relationship between the characteristics of piezoelectric ceramic materials and the constitutive equation of thermal strain, deriving that piezoelectric strain can be precisely equivalent to thermal strain. Based on this, we achieved parameterized modeling of the ULE (ultra low expansion glass) segmented mirror with a side distance of 510 mm and an initial radius of curvature of 9000 mm. Simulation results show that 54 interleaved actuators can achieve a change in the radius of curvature of the segmented mirror by 240.07 mm within a control voltage range of ±20 V, exhibiting a highly linear relationship.
To fully verify the analysis results and achieve engineering application transformation, experimental results indicate that when the control voltage varies within the range of -25 V to 20 V, the change in the radius of curvature of the segmented mirror reaches 223.44 mm, with the positive unit voltage corresponding to a larger change in the radius of curvature than the negative. The proposed design method for a large-range curvature-adjustable segmented mirror has been verified through simulation and experiment to achieve a reconfiguration range of more than 100 mm in the radius of curvature. This provides new ideas for the engineering application of large-aperture segmented optics in in-orbit reconfiguration.
-
-
图 5 不同控制电压下的曲率半径仿真图。 (a) 5 V控制电压下dROC=−33.57 mm; (b) 10 V控制电压下dROC=−66.46 mm; (c) 15 V控制电压下dROC=−99.43 mm; (d) 20 V控制电压下dROC=−132.28 mm; (e) −5 V控制电压下dROC=27.59 mm; (f) −10 V控制电压下dROC=54.55 mm; (g) −15 V控制电压下dROC=82.61 mm; (h) −20 V控制电压下dROC=109.79 mm
Figure 5. Simulation diagrams of curvature radius under different control voltages. (a) At 5 V control voltage, dROC =−33.57 mm; (b) At 10 V control voltage, dROC =−66.46 mm; (c) At 15 V control voltage, dROC =−99.43 mm; (d) At 20 V control voltage, dROC =−132.28 mm; (e) At −5 V control voltage, dROC =27.59 mm; (f) At −10 V control voltage, dROC =54.55 mm; (g) At -15 V control voltage, dROC =82.61 mm; (h) At −20 V control voltage, dROC =109.79 mm
表 1 分块镜建模相关参数
Table 1. Segmented mirror modeling parameters
Material Edge to edge Curvature radius Mirror surface thickness Actuator count Reinforcement rib thickness Edge rib thickness Actuator height ULE 510 mm 9000 mm 4 mm 54 2.5 mm 3 mm 29.6 mm 表 2 压电陶瓷属性参数
Table 2. Piezoelectric ceramic property parameters
Property Density
ρ/(g·cm−3)Elastic modulus
E/GPaPoisson
ratio υCTE
/(10−6·℃−1)Value 8 25 0.2 2 表 3 不同控制电压下曲率半径变化结果
Table 3. Results of curvature radius variations under different control voltages
Control voltage/V Curvature radius/mm Curvature radius variations per unit control voltage/mm 20 8867.72 −6.61 15 8900.57 −6.63 10 8933.54 −6.65 5 8966.43 −6.71 0 9000.00 — −5 9027.59 5.52 −10 9054.55 5.46 −15 9081.61 5.44 −20 9107.79 5.39 表 4 分块镜曲率半径测试结果
Table 4. Results of curvature radius testing for the segmented mirror
Control voltage/V Curvature radius/mm Curvature radius variations corresponding to unit control voltage/mm 20 8891.58 5.51 10 8953.82 4.80 0 9001.83 — −10 9036.19 3.44 −20 9086.40 4.23 −25 9115.02 4.53 -
参考文献
[1] McElwain M W, Feinberg L D, Perrin M D, et al. The James Webb space telescope mission: optical telescope element design, development, and performance[J]. Astron Soc Pac, 2023, 135(1047): 058001. doi: 10.1088/1538-3873/acada0
[2] Postman M, Argabright V, Arnold B, et al. Advanced technology large-aperture space telescope (ATLAST): A technology roadmap for the next decade[EB/OL]. [2021-8-10]. https://arxiv.org/abs/0904.0941.
[3] 廖春晖, 于飞, 刘成, 等. 分块变形镜面形解耦控制方法研究[J]. 航天返回与遥感, 2022, 43(1): 69−78. doi: 10.3969/j.issn.1009-8518.2022.01.007
Liao C H, Yu F, Liu C, et al. Research on the decoupling control method of segmented deformable mirror surface shape[J]. Spacecr Recovery Remote Sens, 2022, 43(1): 69−78. doi: 10.3969/j.issn.1009-8518.2022.01.007
[4] 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 1−15. doi: 10.12086/oee.2018.170489
Jiang W H. Overview of adaptive optics development[J]. Opto-Electron Eng, 2018, 45(3): 1−15. doi: 10.12086/oee.2018.170489
[5] 官春林, 张小军, 邓建明, 等. 中国科学院光电技术研究所的变形反射镜研究进展[J]. 光电工程, 2020, 47(10): 51−62. doi: 10.12086/oee.2020.200337
Guan C L, Zhang X J, Deng J M, et al. Deformable mirror technologies at institute of optics and electronics, Chinese Academy of Sciences[J]. Opto-Electron Eng, 2020, 47(10): 51−62. doi: 10.12086/oee.2020.200337
[6] Chaney D M, Hadaway J B, Lewis J A. Cryogenic radius of curvature matching for the JWST primary mirror segments[J]. Proc SPIE, 2009, 7439: 743916. doi: 10.1117/12.845115
[7] Chonis T S, Gallagher B B, Knight J S, et al. Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion[J]. Proc SPIE, 2018, 10698: 106983S. doi: 10.1117/12.2311815
[8] Redding D. Large segmented apertures in space: active vs. passive[EB/OL]. [2018-4-09]. https://kiss.caltech.edu/special_events/JPL_MPIA/presentations/2_Redding. pdf.
[9] Perrin M D, Acton D S, Lajoie C P, et al. Preparing for JWST wavefront sensing and control operations[J]. Proc SPIE, 2016, 9904: 99040F. doi: 10.1117/12.2233104
[10] Hirose M, Kumeta A, Miyamura N, et al. Wavefront correction using MEMS deformable mirror for earth observation satellite with large segmented telescope[J]. Proc SPIE, 2020, 11448: 114487D. doi: 10.1117/12.2563139
[11] Kimura T, Mizutani T, Shirasawa Y, et al. Geostationary earth observation satellite with large segmented telescope[C]//IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5895–5897. https://doi.org/10.1109/IGARSS.2019.8898683.
[12] Fujii Y, Uno T, Ariki S, et al. Experimental study of 3.6-meter segmented-aperture telescope for geostationary earth observation satellite[J]. Proc SPIE, 2021, 11852: 118522G. doi: 10.1117/12.2599379
[13] Su D Q, Cui X Q. Active optics in LAMOST[J]. Chin J Astron Astrophys, 2004, 4(1): 1−9. doi: 10.1088/1009-9271/4/1/1
[14] 陈佳夷, 王聪, 霍腾飞, 等. 激光跟踪仪检测大口径非球面方法研究[J]. 应用光学, 2021, 42(2): 299−303. doi: 10.5768/JAO202142.0203002
Chen J Y, Wang C, Huo T F, et al. Research on detection method of large-aperture aspheric surface by laser tracker[J]. J Appl Opt, 2021, 42(2): 299−303. doi: 10.5768/JAO202142.0203002
[15] 庞哲, 宗肖颖, 杜建祥. 利用激光跟踪仪测量大口径非球面几何参数[J]. 航天返回与遥感, 2020, 41(3): 47−59. doi: 10.3969/j.issn.1009-8518.2020.03.006
Pang Z, Zong X Y, Du J X. A method measuring geometric parameters for large-aperture aspheric surface with the laser tracker[J]. Spacecr Recovery Remote Sens, 2020, 41(3): 47−59. doi: 10.3969/j.issn.1009-8518.2020.03.006
[16] 帅雨林, 牛冬生, 王海, 等. 高精度镜面位置控制的微位移促动器研究[J]. 天文研究与技术, 2023, 20(3): 250−257. doi: 10.14005/j.cnki.issn1672-7673.20230320.003
Shi Y L, Niu D S, Wang H, et al. Research on micro-displacement actuator for high precision mirror position control[J]. Astron Res Technol, 2023, 20(3): 250−257. doi: 10.14005/j.cnki.issn1672-7673.20230320.003
[17] 吴松航, 董吉洪, 徐抒岩, 等. 拼接式望远镜主镜主动支撑技术综述[J]. 激光与光电子学进展, 2021, 58(3): 0300006. doi: 10.3788/LOP202158.0300006
Wu S H, Dong J H, Xu S Y, et al. Overview of active support technology for main mirror of segmented telescopes[J]. Laser Optoelectron Prog, 2021, 58(3): 0300006. doi: 10.3788/LOP202158.0300006
[18] 黄林海, 凡木文, 周睿, 等. 大口径压电倾斜镜模型辨识与控制[J]. 光电工程, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704
Huang L H, Fan M W, Zhou R, et al. System identification and control for large aperture fast-steering mirror driven by PZT[J]. Opto-Electron Eng, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704
[19] Cohan L E. Integrated modeling and design of lightweight, active mirrors for launch survival and on-orbit performance[D]. Cambridge: Massachusetts Institute of Technology, 2010.
[20] Ealey M A. Integrated actuator meniscus mirror: 20040165289[P]. 2004-08-26.
-
访问统计