-
摘要
随着信息时代的快速发展,光子集成芯片在光通信、量子精密测量、人工智能光计算、微波光子学等领域中的应用需求不断增长。光隔离器作为光子集成芯片的重要组成部分,能够有效地防止光信号的反向传播,保证系统的稳定性和可靠性,广泛应用于光纤通信、量子通信和激光系统等关键技术。本文综述了片上集成光隔离器的研究进展,重点讨论了基于磁光、声光、电光和光学非线性效应的片上集成光隔离器的不同实现方式,探讨了各自的优势与挑战,展望了未来的发展方向和应用前景。
Abstract
As the information age progresses rapidly, the demand for silicon photonic integrated circuits in optical communication, quantum precision measurement, artificial intelligence optical computing, and microwave photonics continues to grow. As an essential component of silicon photonic integrated circuits, optical isolators effectively prevent the backpropagation of optical signals, ensuring system stability and reliability. They are widely used in key technologies such as optical fiber communication, quantum communication, and laser systems. This paper reviews the research progress on on-chip integrated optical isolators, focusing on different implementation methods based on magneto-optic, acousto-optic, electro-optic, and nonlinear optical effects, discussing the advantages and challenges associated with each type. Finally, the paper explores future development directions and potential applications.
-
Key words:
- silicon photonics /
- optical isolator /
- non-reciprocal effect
-
Overview
Overview: The rapid development of information technology has fueled increasing demand for high-performance, low-cost photonic integrated circuits (PICs) in applications like optical communication, microwave photonics, quantum information processing, optical sensing, and artificial intelligence-driven optical computing. In these systems, non-reciprocal photonic devices, particularly optical isolators, are crucial components. Optical isolators allow light to pass in only one direction, blocking back-reflected light that can interfere with optical sources or even damage lasers. In optical communication systems, they help release multi-path interference and enhance system design flexibility by preventing crosstalk between devices. As the need for highly integrated PICs systems grows, the development of efficient, compact, and scalable on-chip optical isolators has become a key research focus. Several implementation methods for on-chip integrated optical isolators have been proposed, based on magneto-optical (MO), acousto-optical (AO), electro-optical (EO), and nonlinear optical effects. Each approach presents unique advantages and faces specific challenges. Magneto-optical isolators achieve non-reciprocal transmission through the Faraday effect. These devices typically consist of a magneto-optical material, such as Ce: YIG and Bi: YIG, combined with Mach-Zehnder interferometer (MZI), micro-ring (MR) or multimode interference (MMI) structures. While MO isolators offer high isolation ratio and robustness, their integration is limited by material mismatches with semiconductors and high insertion loss due to material absorption. AO isolators rely on the interaction between phonon and photon in a waveguide. These isolators are efficient and compatible with low-loss materials like AlN and LiNbO3 but have limited bandwidth due to their narrow optical resonance. Electro-optical isolators control light propagation through the Pockels effect. In an EO isolator, an external electric field modifies the refractive index of the waveguide material, such as LiNbO3, to induce phase changes in the transmitted light. EO isolators are promising due to their fast response times and wide isolation bandwidth but face high power consumption and thermal issues, limiting large-scale integration. Nonlinear optical isolators break reciprocity through effects like Kerr nonlinearity or Four-Wave Mixing, offering broadband operation. However, they require high power levels to achieve strong isolation, making them unsuitable for low-power applications. Additionally, they are complex due to the need for extra pump sources and filters. Future advancements in on-chip optical isolators will focus on optimizing performance while maintaining compactness, scalability, and compatibility with semiconductor processes. Hybrid solutions combining different non-reciprocal effects, improved acoustic wave generation, reduced driving voltages, and the development of new materials with higher nonlinear coefficients will drive the next generation of high-performance isolators.
-
-
图 4 晶圆间接键合制备MO-MZI隔离器[38-39]。(a)由Ce: YIG覆盖的MZI组成的光隔离器原理图俯视图;(b)横切面视图;(c)正反向传输的传输谱;(d)添加PR后的结构原理图;(e)外加磁场下的传输谱
Figure 4. Wafer-level indirect bonding for the preparation of MO-MZI isolator[38-39]. (a) Schematic top view of the optical isolator composed of a MZI covered with Ce: YIG; (b) Cross-sectional view; (c) Transmission spectra for forward and backward transmission; (d) Schematic of the structure after the addition of PR; (e) Transmission spectra under an applied magnetic field
图 5 晶圆直接键合制备MO-MZI隔离器[7,31]。(a)基于MZI的SOI波导光隔离器原理图;(b)制备的MZI硅波导光隔离器的显微镜图像;(c)正反向传输的传输谱;(d)集成TE-TM模式转换器的光隔离器原理图;(e)在Si平台上的显微镜图像;(f)集成光隔离器端口1和端口2之间的透射率
Figure 5. Wafer-level direct bonding for the fabrication of MO-MZI isolator [7,31]. (a) Schematic diagram of an SOI waveguide optical isolator based on MZI; (b) Microscope image of the fabricated MZI silicon waveguide optical isolator; (c) Transmission spectra for forward and backward transmission; (d) Schematic diagram of the optical isolator integrated with a TE-TM mode converter; (e) Microscope image of the integrated optical isolator on the Si platform; (f) Transmittance between port 1 and port 2 of the integrated optical isolator
图 6 沉积技术制备MO-MZI隔离器[32,40]。(a) TM和(b) TE隔离器的光学显微镜和扫描电镜图像,标尺为100 μm;(c) TM和(d) TE模式隔离器的透射光谱;(e)制备的Si3N4/MO波导截面的SEM图像;(f)模拟Si3N4/MO波导基模TM的Ey场分布;(g) TM和(h) TE模式隔离器的透射光谱
Figure 6. MO-MZI isolator fabricated by deposition technology [32,40]. Optical microscope and scanning electron microscope (SEM) images of (a) TM and (b) TE isolators, respectively, with a scale bar of 100 μm; Transmission spectra of (c) TM and (d) TE mode isolators, respectively; (e) SEM image of the cross-section of the fabricated Si3N4/MO waveguide; (f) Simulation of the Ey field distribution of the fundamental TM mode in the Si3N4/MO waveguide; Transmission spectra of (g) TM and (h) TE mode isolators, respectively
图 7 MO-MR隔离器[8,33]。(a) MO-MR光隔离的工作原理;(b)非互易光谐振腔结构示意图;(c) TM模式透射光谱;(d)隔离器装置透视图;(e)片上隔离器装置显微镜图像;(f) TM模式透射光谱
Figure 7. MO-MR isolator[8,33]. (a) Working principle of MO-MR optical isolation; (b) Schematic diagram of the non-reciprocal optical resonator structure; (c) Transmission spectra for the TM mode; (d) Perspective view of the isolator device; (e) Microscope image of the on-chip isolator device; (f) Transmission spectra for the TM mode
图 8 MO-MR隔离器[34,40]。(a)非互易光谐振腔结构示意图;(b) MO-MR隔离器的俯视光学显微图;(c)隔离器的透射光谱;(d)基于Si3N4赛道谐振腔的TM模式光隔离器的光学显微镜图像;(e)隔离器的透射光谱
Figure 8. MO-MR isolator[34,40]. (a) Schematic diagram of a non-reciprocal optical resonator; (b) Top-view optical micrograph of an MO-MR isolator; (c) Transmission spectrum of the isolator; (d) Optical microscope image of a TM-mode optical isolator based on Si3N4 waveguide resonators; (e) Transmission spectrum of the isolator
图 9 MO-MMI隔离器[35-36]。(a) SOI/MMI磁光隔离器结构原理图;(b)隔离器的透射光谱;(c)基于TE模式的MO-MMI隔离器示意图;(d) MO-MMI隔离器的俯视光学显微图;(e)隔离器的透射光谱
Figure 9. MO-MMI isolator[35-36]. (a) Schematic diagram of SOI/MMI magneto-optical isolator structure; (b) Transmission spectra of the isolator;(c) Schematic diagram of MO-MMI isolator based on TE mode; (d) Top-view optical micrograph of MO-MMI isolator; (e) Transmission spectra of the isolator
图 10 声光隔离器[59]。(a)用频率-动量空间表示相位匹配条件;(b)声子-光子相互作用区域示意图;(c)完美的相位匹配条件下的正向反向透射光谱
Figure 10. Acousto-optic isolator[59]. (a) Representation of phase matching conditions in frequency-momentum space; (b) Schematic diagram of the phonon-photon interaction region; (c) Forward and backward transmission spectra under perfect phase matching conditions
图 11 声光隔离器[10-12,61]。(a) CFIDT示意图;(b)声光相互作用区域的横截面;(c)隔离度和插入损耗随频率失谐量的变化图;(d)隔离器装置示意图;(e)隔离器装置横截面图;(f)隔离器的透射光谱
Figure 11. Acousto-optic isolator[10-12,61]. (a) Schematic diagram of the CFIDT; (b) Cross-section view of the acousto-optic interaction region;(c) Variation graph of isolation and insertion loss with frequency detuning; (d) Schematic diagram of the isolator device; (e) Cross-sectional view of the isolator device; (f) Transmission spectra of the isolator
图 12 电光隔离器[13]。(a)基于MZM的隔离器工作原理图;(b)方波电压信号;(c)拟用(b)所示电压调制MZM时的正向和反向传输;(d)在2.75 GHz驱动频率下的正反向传输
Figure 12. Electro-optic isolator[13]. (a) Working principle diagram of the MZM-based isolator; (b) Square-wave voltage signal; (c) Forward and backward transmission when modulating the MZM with the voltage shown in Fig. (b); (d) Forward and backward transmission under the driving frequency of 2.75 GHz
图 14 电光隔离器[15]。(a)电光隔离器原理图;(b)隔离器正向和反向的透射光谱;(c)针对不同波长的指定参数计算出的隔离比
Figure 14. Electro-optic isolator[15]. (a) Schematic of the electro-optic isolator; (b) Transmission spectra of the isolator in forward and backward directions; (c) Calculated isolation ratio for specified parameters at different wavelengths
图 15 非线性光隔离器[16,20]。(a)正向传播的光通过布拉格散射进行光隔离的原理图;(b)反向传播的情况;(c)光隔离器原理图。SPF:短通滤波器,LPF:长通滤波器;(d)隔离器的透射光谱图,上图为正向传播,下图为反向传播
Figure 15. Nonlinear optical isolator [16,20]. (a) Schematic diagram of light isolation through Bragg scattering for forward-propagating light; (b) Case of backward propagation light; (c) Schematic diagram of the optical isolator. SPF: short-pass filter, LPF: long-pass filter; (d) Transmission spectra of the isolator, with the upper plot for forward-propagating light and the lower plot for backward-propagating light
图 16 非线性光隔离器[17-18,65]。(a)微腔中产生自发对称性破缺的原理图;(b)基于克尔效应诱导的熔融硅微腔非互易隔离器装置图;(c)隔离器的特性与输入功率之间的函数关系图;(d) 基于Si3N4隔离器的显微镜图像,标尺:100 μm;(e)不同耦合率κ1和κ2下测量到的插入损耗和隔离峰值
Figure 16. Nonlinear optical isolator [17-18,65]. (a) Schematic of spontaneous symmetry breaking in a microcavity; (b) Device diagram of a nonreciprocal isolator based on Kerr effect-induced fused silica microring; (c) Graph of the isolator's characteristics as a function of input power; (d) Microscope image of a Si3N4 isolator, scale bar: 100 μm; (e) Measured insertion loss and isolation peak under different coupling rates κ1 and κ2
表 1 基于磁光效应的片上集成光隔离器性能比较
Table 1. Performance comparison of on-chip integrated optical isolators based on magneto-optic effects
Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref MO-MZI 2000 4.90@1550 nm — — TM GaInAsP Waveguide [46] 2004 9.90@1550 nm 25.0 — TM HfO2 Waveguide [47] 2008 21.0@1559 nm 8.00 10@10 dB TM Si Waveguide [48] 2012 25.0@1495 nm 9.70 0.40@20 dB TM Si Waveguide [38] 2013 32.0@1540 nm 22.0 0.50@21 dB TE Si Waveguide [39] 2014 30.0@1548 nm 13.0 1.0@20 dB TM Si Waveguide [7] 2016 26.7@1553 nm 33.4 — TE Si Waveguide [31] 2017 17.9@1562 nm 10.0 2.0@10 dB TE a-Si:H Waveguide [49] 2017 29.0@1523 nm 9.00 18@20 dB TM Si Waveguide [50] 2019 30.0@1574 nm 5.00 9.0@10 dB TM Si Waveguide [32] 30.0@1588 nm 9.00 2.0@10 dB TE Si Waveguide 2020 32.0@1555 nm 2.30 4.0@20 dB TM Si3N4 Waveguide [40] 30.0@1558 nm 3.00 5.0@20 dB TE Si3N4 Waveguide 2024 50.0@1550 nm 0.687 72@30 dB TM InP Waveguide [21] MO-MR 2011 19.5@1541.6 nm 18.8 0.040@10 dB TM Si Ring [8] 2011 9.00@1550 nm — 0.040@5 dB TM Si Ring [41] 2016 32.0@1555 nm 2.30 0.60@20 dB TM Si Ring [33] 2017 11.0@1558 nm 9.70 0.16@5 dB TM Si Ring [51] 2017 32.0@1555 nm — 3.0@20 dB TM Si Ring [43] 2018 25.0@1550 nm 6.50 40@20 dB TE Si Ring [42] 2018 40.0@1560.1 nm 3.00 — TM GeSbSe Ring [34] 2019 20.0@1584.8 nm 11.5 — TE Si3N4 Ring [32] 2020 28.0@1570.3 nm 1.00 — TM Si3N4 Ring [40] MO-MMI 2005 2.9@1550 nm — — TM InGaAsP Waveguide [9] 2016 45@1550 nm 0.800 1.60@20 dB TM Si Waveguide [35] 2018 16@1561 nm 3.40 — TE Si Waveguide [36] 2021 15@1537.3 nm 5.00 2.00@10 dB TE Si Waveguide [52] 2024 45@1550 nm 2.59 53.5@35 dB TM GaAs Waveguide [53] 45@1550 nm 2.25 70.0@35 dB TM GaAs Waveguide 表 2 基于声光效应的片上集成光隔离器性能比较
Table 2. Performance comparison of on-chip integrated optical isolators based on acousto-optic effects
Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref AO 2018 15.0@1550 nm — 0.0088@3 dB TE AlN Ring [59] 2019 8.00@1540 nm — 0.0080@3 dB TE AlN Ring [61] 2021 12.0@1523.7 nm 0.6 0.80@16 dB TE Si Waveguide [11] 2021 39.3@1538 nm 1 0.0016@10 dB TE LiNbO3 Ring [10] 2021 10.0@1545.55 nm 0.1 0.0056@8 dB TE Si3N4 Ring [12] 表 3 基于电光效应的片上集成光隔离器性能比较
Table 3. Performance comparison of on-chip integrated optical isolators based on electro-optic effects
Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref EO 2005 30.0@1550 nm 8.0 — — GaAs/
AlGaAsWaveguide [64] 2015 12.5@1500 nm 5.5 90.0@12.5 dB — LiNbO3 Waveguide [13] 2016 — 5.3 90.0@7 dB — LiNbO3 Waveguide [65] 2021 13@1556 nm 18 0.0160@3 dB — Si Ring [66] 2023 48.0@1553.2 nm 0.50 120@37 dB TE LiNbO3 Waveguide [14] 2023 15.0@1550 nm 0.50 100@10 dB TE LiNbO3 Waveguide [15] 表 4 基于光学非线性效应的片上集成光隔离器性能比较
Table 4. Performance comparison of on-chip integrated optical isolators based on nonlinear optical effects
Device type Year Isolation ratio/dB Insertion loss/dB Isolation bandwidth/nm Polarization Platform Structure Ref Kerr 2013 4.0@1582.3 nm — 8.00@4 dB — Si Waveguide [16] 2017 30@1550 nm 7.0 — — Fused silica Ring [17] 2022 23@1550 nm 4.6 — — Si3N4 Ring [18] 17@1550 nm 1.3 — — Si3N4 Ring $ \chi^{\left(\text{2}\right)} $ 2020 40@1570 nm 6.6 150@18 dB — LiNbO3 Waveguide [20] -
参考文献
[1] Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 2017, 8(1): 636. doi: 10.1038/s41467-017-00714-1
[2] 恽斌峰, 胡国华, 史上清, 等. 微波光子集成芯片研究进展(特邀)[J]. 光学学报, 2024, 44(15): 1513029. doi: 10.3788/AOS240983
Yun B F, Hu G H, Shi S Q, et al. Research progress in integrated microwave photonic chips (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513029. doi: 10.3788/AOS240983
[3] Bogaerts W, Pérez D, Capmany J, et al. Programmable photonic circuits[J]. Nature, 2020, 586(7828): 207−216. doi: 10.1038/s41586-020-2764-0
[4] Chi Y L, Yu Y, Gong Q H, et al. High-dimensional quantum information processing on programmable integrated photonic chips[J]. Sci China Information Sci, 2023, 66(8): 180501. doi: 10.1007/s11432-022-3602-0
[5] Jalas D, Petrov A, Eich M, et al. What is—and what is not—an optical isolator[J]. Nat Photonics, 2013, 7(8): 579−582. doi: 10.1038/nphoton.2013.185
[6] 张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020. doi: 10.3788/AOS241073
Zhang Z J, Yan W, Qin J, et al. Integrated nonreciprocal photonic devices (Invited)[J]. Acta Opt Sin, 2024, 44(15): 1513020. doi: 10.3788/AOS241073
[7] Shoji Y, Mizumoto T. Magneto-optical non-reciprocal devices in silicon photonics[J]. Sci Technol Adv Mater, 2014, 15(1): 014602. doi: 10.1088/1468-6996/15/1/014602
[8] Bi L, Hu J J, Jiang P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nat Photonics, 2011, 5(12): 758−762. doi: 10.1038/nphoton.2011.270
[9] Yang J S, Roh J W, Ok S H, et al. An integrated optical waveguide isolator based on multimode interference by wafer direct bonding[J]. IEEE Trans Magn, 2005, 41(10): 3520−3522. doi: 10.1109/TMAG.2005.854960
[10] Sohn D B, Örsel O E, Bahl G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting[J]. Nat Photonics, 2021, 15(11): 822−827. doi: 10.1038/s41566-021-00884-x
[11] Kittlaus E A, Jones W M, Rakich P T, et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics[J]. Nat Photonics, 2021, 15(1): 43−52. doi: 10.1038/s41566-020-00711-9
[12] Tian H, Liu J Q, Siddharth A, et al. Magnetic-free silicon nitride integrated optical isolator[J]. Nat Photonics, 2021, 15(11): 828−836. doi: 10.1038/s41566-021-00882-z
[13] Dong P. Travelling-wave Mach-Zehnder modulators functioning as optical isolators[J]. Opt Express, 2015, 23(8): 10498−10505. doi: 10.1364/OE.23.010498
[14] Yu M J, Cheng R, Reimer C, et al. Integrated electro-optic isolator on thin-film lithium niobate[J]. Nat Photonics, 2023, 17(8): 666−671. doi: 10.1038/s41566-023-01227-8
[15] Shah M, Briggs I, Chen P K, et al. Visible-telecom tunable dual-band optical isolator based on dynamic modulation in thin-film lithium niobate[J]. Opt Lett, 2023, 48(8): 1978−1981. doi: 10.1364/OL.482635
[16] Saha K, Okawachi Y, Kuzucu O, et al. Chip-scale broadband optical isolation via Bragg scattering four-wave mixing[C]//CLEO: 2013, 2013: 1–2. https://doi.org/10.1364/CLEO_QELS.2013.QF1D.2.
[17] Del Bino L, Silver J M, Zhao X, et al. Isolators and circulators based on Kerr nonreciprocity in microresonators[C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, 2017: 1. https://doi.org/10.1109/CLEOE-EQEC.2017.8086519.
[18] White A D, Ahn G H, van Gasse K, et al. Integrated passive nonlinear optical isolators[J]. Nat Photonics, 2023, 17(2): 143−149. doi: 10.1038/s41566-022-01110-y
[19] Herrmann J F, Ansari V, Wang J H, et al. Mirror symmetric on-chip frequency circulation of light[J]. Nat Photonics, 2022, 16(8): 603−608. doi: 10.1038/s41566-022-01026-7
[20] Abdelsalam K, Li T F, Khurgin J B, et al. Linear isolators using wavelength conversion[J]. Optica, 2020, 7(3): 209−213. doi: 10.1364/OPTICA.385639
[21] Chen W T, Liu L, Zhao J, et al. On-chip broadband, compact TM mode Mach–Zehnder optical isolator based on InP-on-insulator platforms[J]. Nanomaterials, 2024, 14(8): 709. doi: 10.3390/nano14080709
[22] Potton R J. Reciprocity in optics[J]. Rep Prog Phys, 2004, 67(5): 717−754. doi: 10.1088/0034-4885/67/5/R03
[23] Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials[J]. IEEE Trans Microwave Theory Tech, 2002, 50(3): 721−737. doi: 10.1109/22.989957
[24] Dötsch H, Bahlmann N, Zhuromskyy O, et al. Applications of magneto-optical waveguides in integrated optics: review[J]. J Opt Soc Am B, 2005, 22(1): 240−253. doi: 10.1364/JOSAB.22.000240
[25] Karki D, Stenger V, Pollick A, et al. Broadband bias-magnet-free on-chip optical isolators with integrated thin film polarizers[J]. J Lightwave Technol, 2020, 38(4): 827−833. doi: 10.1109/JLT.2019.2949377
[26] Yan W, Yang Y C, Yang W H, et al. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon[J]. IEEE J Sel Top Quantum Electron, 2022, 28(3): 6100515. doi: 10.1109/JSTQE.2021.3133445
[27] Liang X, Xie J L, Deng L J, et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of Ce xY3− xFe5O12[J]. Appl Phys Lett, 2015, 106(5): 052401. doi: 10.1063/1.4907413
[28] Zaki A M, Blythe H J, Heald S M, et al. Growth of high quality yttrium iron garnet films using standard pulsed laser deposition technique[J]. J Magn Magn Mater, 2018, 453: 254−257. doi: 10.1016/j.jmmm.2017.11.054
[29] Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering[J]. J Appl Phys, 1991, 70(11): 7065−7067. doi: 10.1063/1.349786
[30] Mizumoto T, Naito Y. Nonreciprocal propagation characteristics of YIG thin film[J]. IEEE Trans Microwave Theory Tech, 1982, 30(6): 922−925. doi: 10.1109/TMTT.1982.1131173
[31] Shoji Y, Fujie A, Mizumoto T. Silicon waveguide optical isolator operating for TE mode input light[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403307. doi: 10.1109/JSTQE.2016.2574678
[32] Zhang Y, Du Q Y, Wang C T, et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics[J]. Optica, 2019, 6(4): 473−478. doi: 10.1364/OPTICA.6.000473
[33] Huang D N, Pintus P, Zhang C, et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE J Sel Top Quantum Electron, 2016, 22(6): 4403408. doi: 10.1109/JSTQE.2016.2588778
[34] Du Q Y, Wang C T, Zhang Y F, et al. Monolithic on-chip magneto-optical isolator with 3 dB insertion loss and 40 dB isolation ratio[J]. ACS Photonics, 2018, 5(12): 5010−5016. doi: 10.1021/acsphotonics.8b01257
[35] Shui K Y, Nie L X, Zhang Y, et al. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates[J]. Opt Express, 2016, 24(12): 12856−12867. doi: 10.1364/OE.24.012856
[36] Yamaguchi R, Shoji Y, Mizumoto T. Low-loss waveguide optical isolator with tapered mode converter and magneto-optical phase shifter for TE mode input[J]. Opt Express, 2018, 26(16): 21271−21278. doi: 10.1364/OE.26.021271
[37] Auracher F, Witte H H. A new design for an integrated optical isolator[J]. Opt Commun, 1975, 13(4): 435−438. doi: 10.1016/0030-4018(75)90140-6
[38] Ghosh S, Keyvavinia S, Van Roy W, et al. Ce: YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding[J]. Opt Express, 2012, 20(2): 1839−1848. doi: 10.1364/OE.20.001839
[39] Ghosh S, Keyvaninia S, Shirato Y, et al. Optical isolator for TE polarized light realized by adhesive bonding of Ce: YIG on silicon-on-insulator waveguide circuits[J]. IEEE Photonics J, 2013, 5(3): 6601108. doi: 10.1109/JPHOT.2013.2264275
[40] Yan W, Yang Y C, Liu S Y, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms[J]. Optica, 2020, 7(11): 1555−1562. doi: 10.1364/OPTICA.408458
[41] Tien M C, Mizumoto T, Pintus P, et al. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets[J]. Opt Express, 2011, 19(12): 11740−11745. doi: 10.1364/OE.19.011740
[42] Huang D N, Pintus P, Bowers J E. Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited][J]. Opt Mater Express, 2018, 8(9): 2471−2483. doi: 10.1364/OME.8.002471
[43] Pintus P, Huang D N, Zhang C, et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics[J]. J Lightwave Technol, 2017, 35(8): 1429−1437. doi: 10.1109/JLT.2016.2644626
[44] Zhuromskyy O, Lohmeyer M, Bahlmann N, et al. Analysis of nonreciprocal light propagation in multimode imaging devices[J]. Opt Quantum Electron, 2000, 32(6): 885−897. doi: 10.1023/A:1007078814985
[45] Furuya K, Nemoto T, Kato K, et al. Athermal operation of a waveguide optical isolator based on canceling phase deviations in a Mach–Zehnder interferometer[J]. J Lightwave Technol, 2016, 34(8): 1699−1705. doi: 10.1109/JLT.2015.2505538
[46] Yokoi H, Mizumoto T, Shinjo N, et al. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift[J]. Appl Opt, 2000, 39(33): 6158−6164. doi: 10.1364/AO.39.006158
[47] Yokoi H, Shoji Y, Shin E, et al. Interferometric optical isolator employing a nonreciprocal phase shift operated in a unidirectional magnetic field[J]. Appl Opt, 2004, 43(24): 4745−4752. doi: 10.1364/AO.43.004745
[48] Shoji Y, Mizumoto T, Yokoi H, et al. Magneto-optical isolator with silicon waveguides fabricated by direct bonding[J]. Appl Phys Lett, 2008, 92(7): 071117. doi: 10.1063/1.2884855
[49] Ishida E, Miura K, Shoji Y, et al. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift[J]. Opt Express, 2017, 25(1): 452−462. doi: 10.1364/OE.25.000452
[50] Huang D N, Pintus P, Shoji Y, et al. Integrated broadband Ce: YIG/Si Mach–Zehnder optical isolators with over 100 nm tuning range[J]. Opt Lett, 2017, 42(23): 4901−4904. doi: 10.1364/OL.42.004901
[51] Huang D N, Pintus P, Zhang C, et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 2017, 4(1): 23−30. doi: 10.1364/OPTICA.4.000023
[52] Liu S Y, Shoji Y, Mizumoto T. Mode-evolution-based TE mode magneto-optical isolator using asymmetric adiabatic tapered waveguides[J]. Opt Express, 2021, 29(15): 22838−22846. doi: 10.1364/OE.427914
[53] Liu L, Chen W T, Zhao J, et al. Two structural designs of broadband, low-loss, and compact TM magneto-optical isolator based on GaAs-on-insulator[J]. Nanomaterials, 2024, 14(5): 400. doi: 10.3390/nano14050400
[54] Tadesse S A, Li M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies[J]. Nat Commun, 2014, 5(1): 5402. doi: 10.1038/ncomms6402
[55] Liu J Q, Tian H, Lucas E, et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 2020, 583(7816): 385−390. doi: 10.1038/s41586-020-2465-8
[56] Tadesse S A, Li H, Liu Q Y, et al. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band[J]. Appl Phys Lett, 2015, 107(20): 201113. doi: 10.1063/1.4935981
[57] Luo Z F, Zhang A X, Huang W X, et al. Aluminum nitride thin film based reconfigurable integrated photonic devices[J]. IEEE J Sel Top Quantum Electron, 2023, 29(3): 9300119. doi: 10.1109/JSTQE.2023.3245290
[58] Shao L B, Yu M J, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12): 1498−1505. doi: 10.1364/OPTICA.6.001498
[59] Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 2018, 12(2): 91−97. doi: 10.1038/s41566-017-0075-2
[60] Kuhn L, Heidrich P F, Lean E G. Optical guided wave mode conversion by an acoustic surface wave[J]. Appl Phys Lett, 1971, 19(10): 428−430. doi: 10.1063/1.1653758
[61] Sohn D B, Bahl G. Direction reconfigurable nonreciprocal acousto-optic modulator on chip[J]. APL Photonics, 2019, 4(12): 126103. doi: 10.1063/1.5123497
[62] Tian H, Liu J Q, Dong B, et al. Hybrid integrated photonics using bulk acoustic resonators[J]. Nat Commun, 2020, 11(1): 3073. doi: 10.1038/s41467-020-16812-6
[63] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101−104. doi: 10.1038/s41586-018-0551-y
[64] Bhandare S, Ibrahim S K, Sandel D, et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material[J]. IEEE J Sel Top Quantum Electron, 2005, 11(2): 417−421. doi: 10.1109/JSTQE.2005.845620
[65] Dong P, Gui C C. Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach–Zehnder modulators[J]. Opt Lett, 2016, 41(12): 2723−2726. doi: 10.1364/OL.41.002723
[66] Dostart N, Gevorgyan H, Onural D, et al. Optical isolation using microring modulators[J]. Opt Lett, 2021, 46(3): 460−463. doi: 10.1364/OL.408614
[67] Del Bino L, Silver J M, Stebbings S L, et al. Symmetry breaking of counter-propagating light in a nonlinear resonator[J]. Sci Rep, 2017, 7(1): 43142. doi: 10.1038/srep43142
[68] 程亚. 薄膜铌酸锂光电器件与超大规模光子集成(特邀)[J]. 中国激光, 2024, 51(1): 0119001. doi: 10.3788/CJL231256
Cheng Y. Thin film lithium niobate electro-optic devices and ultralarge-scale photonic integration (Invited)[J]. Chin J Lasers, 2024, 51(1): 0119001. doi: 10.3788/CJL231256
-
访问统计