New website getting online, testing
Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films
  • Abstract

    Self-assembly of noble metal nanoparticles into superlattices can couple with plasmonic modes and light fields, holding significant promise in enhanced spectroscopy and sensing applications. However, controlling the number of layers in these self-assembled superlattice films is challenging, and small sample sizes limit their potential applications. In this study, based on a wetting-enhanced interfacial self-assembly method, we demonstrate the rapid and large-scale fabrication of monolayer densely packed nanoparticle films. Additionally, a layer-by-layer stacking method is employed to fabricate large-area, uniformly distributed gold nanoparticle superlattice films with different numbers of layers. Both experimental and computational transmission/reflection spectra indicate that the prepared superlattice samples effectively excite plasmonic modes, and higher-order plasmonic modes can also be efficiently excited with increasing superlattice layers. Moreover, adjusting the nanoparticle size enables effective modulation of the resonance peak positions of plasmonic modes. These findings provide an effective approach for the large-scale fabrication of high-quality nanoparticle superlattice films, holding promise for the design of high-performance micro/nano photonic devices.

    Keywords

  • 最近,Song等人[]提出了一种基于润湿增强的界面自组装单层密排纳米颗粒薄膜的方法,利用具有低介电常数的乙醇作为溶剂,克服动能势垒,从而降低金纳米颗粒表面电荷密度,使颗粒被吸引到低张力界面上,能够在数秒内在液体界面处形成大面积密排纳米颗粒单层薄膜。基于上述研究背景,本文提出了采用逐层堆叠法制备大面积、均匀分布的金纳米颗粒超晶格薄膜样品,并通过调控层数来实现不同的结构特性。值得注意的是,此界面自组装方法相比于其它自组装方法具有超快组装速度、显著的组装效率和超大组装面积的优势,且无需对纳米颗粒进行额外的功能化预处理[-]。实验与计算所得的透/反射光谱数据表明,所制备的超晶格样品不仅能够有效激发极化激元模式,而且随着层数的增加,高阶极化激元模式也能得到显著激发。此外,本文还探索了纳米颗粒尺寸对极化激元模式共振峰位的调制作用,通过调整颗粒尺寸可以实现精确的峰位调控。这些研究结果为大面积制备高质量纳米颗粒超晶格薄膜提供了新的有效方法,对于开发高性能光电器件、高效催化剂、多功能生物传感器以及新型存储介质等具有重要意义。

    近年来由贵金属纳米颗粒在三维空间中密集有序排列所形成的超晶格结构引起了人们的广泛关注[-]。其中纳米颗粒之间由于具有很小的间隔,能够形成很大的等离激元耦合作用,从而有效增强对入射场能量的聚焦,在结构内部可形成很大的局域场增强[-]。同时通过对纳米颗粒材料、形貌、尺寸以及超晶格晶体结构的调整,能够有效调制超晶格的光学响应[-]。特别是不久前文献报道了在金纳米颗粒超晶格中,当颗粒之间间隔小于约1/10颗粒尺寸的情况下,超晶格等离激元与光场的超强耦合作用能够激发极化激元模式,并可达到深强耦合的区域,这为纳米尺度上增强光与物质的相互作用提供了一种重要的有效体系[,-]。基于超晶格对入射场能量的聚焦作用,以及上述丰富的光学响应,贵金属纳米颗粒超晶格在增强光谱及传感等领域已展现出重要的应用前景[-]

    为了制备贵金属纳米颗粒超晶格,目前人们多采用自组装方法,这些方法具有操作简便、成本较低,且可以在不同尺度和形态(如二维或三维结构)上实现精细控制的优势。其中自组装制备过程中常涉及到几个关键步骤,包括纳米颗粒合成、表面功能化、溶剂选择和组装条件控制。采用不同的自组装方案,如溶剂蒸发[]、配体介导组装[-]和模板导向组装[]等,可以诱导胶体溶液中纳米颗粒自组装成所需的结构。例如通过纳米颗粒上DNA分子的调整和设计[-],即可方便地制备纳米颗粒聚合体有序结构,然而这种方法难以实现长程有序超晶格结构的制备。通过在纳米颗粒上包覆功能化聚合物分子(如聚苯乙烯分子),在溶剂缓慢蒸发过程中,纳米颗粒即可在液体/液体、液体/气体、液体/固体等界面处自组装形成长程有序的超晶格结构,因此成为制备纳米颗粒超晶格薄膜的一种重要方法[]。然而这种方法所制备样品一般具有多层分布,较难控制样品层数分布,同时所制备的超晶格薄膜面积相对较小。故如何实现高质量、大面积制备可控层数的纳米颗粒超晶格,成为了推进相关应用领域的关键技术瓶颈。

    十六烷基三甲基氯化铵(CTAC;纯度:99%)、抗坏血酸(L-AA;纯度:97%)、四氯金酸氢三水合物 (HAuCl4·3H2O;纯度:99%)、硼氢化钠 (NaBH4;纯度:99.99%)和全氟癸硫醇 (1H,1H,2H,2H-perfluorodecanethiol (PFT);纯度:97%)、正己烷(hexane;纯度:99%)、无水乙醇 (ethyl alcohol;纯度:99.5%) 购自Sigma-Aldrich。所有材料均直接使用,无需进一步纯化。

    研究基于Zheng等人[]提出的种子生长方案,以制备具有较好分散性和尺寸均匀性的金纳米颗粒 (AuNPs)胶体溶液。首先进行金种子的合成,将50 μL的0.05 mol/L HAuCl4溶液加入到5 mL的0.1 mol/L CTAC溶液中,在剧烈搅拌下注入200 μL新制备的0.02 mol/L NaBH4 (7.6 mg/10 mL)溶液。静置3 h后,将混合物在100 mmol/L的CTAC中稀释10倍。随后制备10 nm金球,将900 μL种子溶液和40 μL 0.1 mol/L抗坏血酸加入到10 mL 25 mmol/L CTAC溶液中。在剧烈搅拌下注入50 μL的0.05 mol/L HAuCl4溶液。随后将混合物在室温下静置15 min。然后开始生长金纳米球,将1000 μL的10 nm金球和40 μL的0.1 mol/L抗坏血酸加入到10 mL的25 mmol/L CTAC溶液中。值得注意的是,通过精确控制10 nm金球的添加量能够调控最终所得纳米颗粒的尺寸,且误差能够控制在±(1~2) nm。具体而言,目标尺寸为20 nm则需添加1000 μL/10 ml的10 nm金球,而对于25 nm和30 nm的添加量分别为400 μL/10 ml和200 μL/10 ml。在剧烈搅拌下加入50 μL 0.05 mol/L HAuCl4溶液,将混合物在室温下静置1 h。最后进行氧化刻蚀,在快速搅拌下,向10 mL生长的纳米颗粒中注入10 μL稀释的次氯酸钠溶液。5 min后,在搅拌下加入1000 μL 0.05 mol/L HAuCl4溶液。将混合物在30 ℃下保持原状,直到氧化完成。最后使用1 mmol/L CTAC溶液对金球溶液进行离心洗涤两次后存放,以备后续使用。

    Solvent usage of gold nanoparticles of different sizes

    不同尺寸金纳米颗粒的溶剂使用量

    金球尺寸
    /nm
    金球浓度
    /(nmol/L)
    金球体积
    /mL
    混合溶液
    /mL
    PFT
    /(mg/mL)
    1842.254.510
    203.32.254.510
    222.62.254.510
    251.82.254.510
    301.42.254.510
    CSV Show Table

    以尺寸为20 nm的金纳米颗粒为例。首先,用5 mmol/L 的CTAC水溶液对新鲜制备的金纳米颗粒进行离心纯化,以使其尺寸分布更加均匀,同时调整其颗粒浓度。接着,将10 mg/mL的PFT溶解于4.5 mL的混合溶液中(其中乙醇与正己烷的体积比为2:1),搅拌均匀后,将PFT混合溶液注入2.25 mL的金纳米颗粒胶体溶液中,然后快速摇匀约10 s。关键在于控制溶剂的缓慢挥发,这样便能有效地将其组装成密排纳米颗粒单层薄膜。

    采用Song等人[]提出的基于润湿增强的界面自组装方法制备密排纳米颗粒单层薄膜,其中自组装过程中引入了全氟癸硫醇(PFT)。由于具有低表面自由能的全氟化分子能够有效调节NPs润湿性[],并且PFT具有超疏水特性,使AuNPs具有超高的接触角,从而实现了极低的动力学吸附势垒,能够在数秒内在液体界面处形成大面积密排纳米颗粒单层薄膜。相较于Song等人的方法,本文对制备过程进行了以下优化:首先通过种子介导生长法获得形状规则且尺寸均一的金纳米颗粒,并运用离心筛选优化尺寸分布;随后精细调控了颗粒浓度和溶剂用量等关键参数,以匹配不同尺寸金纳米颗粒的理想生长条件(见表1);最后使溶剂缓慢挥发,能够有效增强金纳米颗粒的密集有序排列。

    具体实验操作如下:

    图 1(b)中左下角插图给出了在直径2.5 cm的烧杯中制备的金纳米颗粒单层超晶格薄膜。需要指出,这种基于润湿增强的界面自组装方法可以根据所选择的容器、样品用量等,能够在数秒内在液体界面处自组装制备更大面积的高质量单层薄膜。使用场发射扫描电子显微镜(ZEISS GeminiSEM 300)对样品进行表征,图 1(b)及其右上角插图给出了所制备样品不同放大倍数的扫描电子显微镜图像,可见此界面自组装方法制备的金纳米颗粒薄膜呈现出均匀、致密的六角排列,表明所制备单层薄膜样品具有较好的质量。

    鉴于单层纳米颗粒薄膜的性能与功能往往受限于其单维度结构固有的局限性,因此本研究进一步拓展了多层结构的构建,旨在实现对光与物质相互作用更为复杂精细的调谐。已有大量文献报道了多层贵金属纳米颗粒超晶格中等离激元与光场的耦合能够激发极化激元模式,在增强光谱及传感等新型光子器件中具有重要的应用前景[-],如何高质量、大面积制备特定层数纳米颗粒超晶格是实现这些应用的关键。通过增大纳米颗粒用量,采用上述自组装方法可以实现多余纳米颗粒在单层薄膜上的进一步堆叠,但其有序排列度相对单层薄膜很差,因此这种自组装方法并不适合多层超晶格薄膜的制备[]。采用传统的溶剂慢速蒸发自组装方法(如包覆聚苯乙烯分子的金纳米颗粒甲苯溶液)[],尽管可以制备出高质量的多层超晶格薄膜,但其所制备样品一般具有多层分布,较难控制所制备样品层数分布,同时所制备超晶格薄膜面积相对较小。为了可控制备大面积所需层数的超晶格薄膜,如图 1(a)所示,本文采用了逐层堆叠印刷的方法。应当注意的是,需要确保在堆叠过程中基片与薄膜能够达到理想的平面接触状态,这有助于提高薄膜的整体均匀性、降低缺陷率。图 1(c-f)给出了在边长约1 cm PDMS片上制备的一层到四层金纳米颗粒超晶格薄膜图像,可见所制备超晶格薄膜具有较好的均匀性。通过增大自组装容器及基片尺寸,可以制备更大面积的纳米颗粒超晶格,且对于不同材质的基片,如玻璃、硅片等同样适用。

    Figure 1. (a) Schematic illustration of the self-assembly and film transfer process of gold nanoparticles (NPs) induced by PFT at the water-n-hexane interface; (b) Scanning electron microscope (SEM) images of a monolayer gold nanoparticle film with a particle size of 20 nm and interparticle spacing of 1-2 nm. Scale bars are 1 μm, 200 nm, and 50 nm, respectively. Inset: Image of a monolayer gold nanoparticle film in a beaker; (c-f) Images of gold nanoparticle superlattice films with different numbers of layers transferred onto a PDMS substrate using a layer-by-layer stacking method. Images from (c) to (f) represent one layer to four layers, respectively
    Full-Size Img PowerPoint

    (a) Schematic illustration of the self-assembly and film transfer process of gold nanoparticles (NPs) induced by PFT at the water-n-hexane interface; (b) Scanning electron microscope (SEM) images of a monolayer gold nanoparticle film with a particle size of 20 nm and interparticle spacing of 1-2 nm. Scale bars are 1 μm, 200 nm, and 50 nm, respectively. Inset: Image of a monolayer gold nanoparticle film in a beaker; (c-f) Images of gold nanoparticle superlattice films with different numbers of layers transferred onto a PDMS substrate using a layer-by-layer stacking method. Images from (c) to (f) represent one layer to four layers, respectively

    Figure 2. Reflectance spectra (a) and transmission spectra (b) of gold nanoparticle films with a size of 20 nm, from one to six layers, with the solid black line indicating the simulation results and the red line indicating the experimental measurements
    Full-Size Img PowerPoint

    Reflectance spectra (a) and transmission spectra (b) of gold nanoparticle films with a size of 20 nm, from one to six layers, with the solid black line indicating the simulation results and the red line indicating the experimental measurements

    Figure 4. Reflectance spectra of gold nanoparticle superlattice films with different numbers of layers and diameters (20 nm - black curve, 25 nm - red curve, 30 nm - blue curve). (a) Experimental measurement results; (b) Numerical simulation results
    Full-Size Img PowerPoint

    Reflectance spectra of gold nanoparticle superlattice films with different numbers of layers and diameters (20 nm - black curve, 25 nm - red curve, 30 nm - blue curve). (a) Experimental measurement results; (b) Numerical simulation results

    文献中研究结果表明,极化激元模式的激发取决于超晶格中纳米颗粒之间的距离、层数、颗粒形状、直径和晶格类型[,]。因此,为了验证本文采用的逐层堆叠方法所制备的超晶格薄膜可以实现对极化激元模式的调制作用,研究中制备了由尺寸约20 、25和30 nm的金纳米颗粒所构成的超晶格薄膜样品。图 4(a)展示了测试所得这些不同尺寸、不同层数超晶格薄膜样品的反射光谱,计算所得对应反射光谱如图 4(b)所示。实验和计算结果都表明,随着纳米颗粒尺寸的增大,单层样品的局域共振模式、多层样品的极化激元模式都出现了红移。此外,如二层超晶格薄膜光谱所示,相应极化激元模式调制深度也会随着颗粒尺寸的增大而逐渐增强,故通过纳米颗粒尺寸的调整可用于超晶格薄膜光学响应的调制。综上可见,采用逐层堆叠方法能够快速、大面积制备高质量的特定层数的超晶格薄膜,基于所制备样品可以实现极化激元模式的有效激发,通过纳米颗粒结构参数的调整也可实现对极化激元模式的有效调制。

    为了更好地展示超晶格薄膜极化激元模式的激发特性,采用 FDTD Lumerical 仿真软件对所设计的超晶格薄膜在x-z平面上进行电场仿真。Mesh设置为0.5 nm,光源设置为Plane Wave。超晶格的xy方向的边界条件设置为 Anti-Symmetric和 Symmetric,而z方向边界采用完美匹配层 PML。图3给出了不同层超晶格薄膜在x-z平面上的各共振峰位处的电场增强因子的分布。如图 3(a)所示,对于单层纳米颗粒薄膜,由于颗粒间的等离激元耦合作用,在间隔处可以形成很强的局域场增强,并且颗粒之间具有同相的耦合,故这一共振模式可归因于纳米颗粒薄膜中所形成集体偶极共振。对于双层纳米颗粒超晶格薄膜(图 3(b)),在上下两层纳米颗粒间隔处皆可形成增强的局域场,同时如右边示意图所示其具有相反的振荡相位,故这种低阶极化激元模式具有相对更小的辐射损耗,在反射光谱中可以看到与偶极共振模式相比,其光谱展宽更小。当纳米颗粒超晶格增大到六层,在相同低阶极化激元模式共振峰位处同样可以观察到这种反相的等离激元耦合作用(图 3(c))。此外,对于高阶极化激元模式(图 3(d)),由于相位延迟效应,其近场分布呈现出更加复杂的近场耦合特性。

    为了验证所制备超晶格样品的质量能否有效激发极化激元模式,采用自主搭建的显微透反射谱集成光学系统对样品进行了测量,其中主体显微镜的型号为 BX53(Olympus),光谱仪型号为 PI-HRS300 (Princeton Instruments),检测 CCD 相机为 ProEM HS:1024BX3,系统采用白光源进行测试。图2中红色实线给出了实验测量所得的由20 nm金纳米颗粒所构成的不同层数超晶格薄膜的反/透射光谱;为了对比,黑色实线给出了采用 FDTD Lumerical 仿真软件对所设计的超晶格薄膜进行数值计算所得的反/透射光谱。其中纳米颗粒之间间隔设置为1 nm ,Mesh设置为2 nm,光源设置为Plane Wave。超晶格的四周边界条件设置为 Periodic,而上下边界采用完美匹配层 PML。从图 2可见计算光谱与实验光谱能够较好地匹配。对于单层纳米颗粒薄膜,实验和计算光谱都表明在约600 nm处出现了一个共振,这是由各个纳米颗粒之间同相耦合所形成的偶极等离激元共振模式,故光谱具有较大的辐射展宽。当超晶格薄膜增大到两层,实验测试所得反射谱中600 nm附近出现了一个较弱的反射谷,对应波长透射谱中出现了一个共振峰,对应计算光谱中这一现象更加明显。同时随着超晶格薄膜层数的增加,实验测试及计算光谱中这一共振模式调制深度逐渐增加,同时红移至长波波段。这些结果与已有文献中报道的慢速蒸发制备超晶格薄膜的光学响应匹配,其中这一共振可归结于等离激元与光场的耦合所形成的最低阶极化激元模式[]。此外,当超晶格薄膜增大到四层时,计算所得反射谱中除了上述共振,在585 nm附近同时出现了一个新的共振模式。由于实验测量过程中可能存在的不确定性和噪声源,如背景散射、检测系统的分辨率限制以及样品制备过程中的微小偏差,在此情况下实验测试光谱中这一现象并不明显,但随着超晶格薄膜层数的增加,也可观察到这一共振模式调制深度逐渐增加并红移。依照已有文献,在传统方法制备超晶格薄膜中具有类似的现象,其中这一短波波段出现的共振可归因于高阶极化激元模式的激发[]

    Figure 3. Near-field distribution of a thin film of gold nanoparticles with a diameter of 20 nm and an interparticle spacing of 1 nm in (a) a single layer, (b) a bilayer, (c) a six-layer (λ = 638 nm), and (d) a six-layer (λ = 778 nm). The plasma pattern of current distribution through the interior of the nanoparticles is demonstrated next to it, and the dipole moments in the particles of each layer are indicated by the white arrows
    Full-Size Img PowerPoint

    Near-field distribution of a thin film of gold nanoparticles with a diameter of 20 nm and an interparticle spacing of 1 nm in (a) a single layer, (b) a bilayer, (c) a six-layer (λ = 638 nm), and (d) a six-layer (λ = 778 nm). The plasma pattern of current distribution through the interior of the nanoparticles is demonstrated next to it, and the dipole moments in the particles of each layer are indicated by the white arrows

    本文利用基于润湿增强的界面自组装方法,实现了单层密排纳米颗粒薄膜的快速、大面积制备。在此基础上,通过逐层堆叠技术,成功构建了具有不同层数的大面积、均匀分布的金纳米颗粒超晶格薄膜样品。实验和计算透/反射光谱数据证实,所制备的超晶格样品不仅能够高效激发极化激元模式,而且随着层数的增加,高阶极化激元模式也能得到有效激发。此外,基于这种逐层堆叠方法所制备超晶格薄膜样品,通过调整纳米颗粒的尺寸,可以精确调控极化激元模式的共振峰位。这些研究结果为制备大面积高质量纳米颗粒超晶格薄膜提供了切实可行的方案,为高性能微纳光子器件的设计提供了有力支持。

    所有作者声明无利益冲突

  • References

    [1]

    García-Lojo D, Núñez-Sánchez S, Gómez-Graña S, et al. Plasmonic supercrystals[J]. Acc Chem Res, 2019, 52(7): 1855−1864.

    DOI: 10.1021/acs.accounts.9b00213

    CrossRef Google Scholar

    [2]

    Ross M B, Mirkin C A, Schatz G C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures[J]. J. Phys Chem C, 2016, 120(2): 816−830.

    DOI: 10.1021/acs.jpcc.5b10800

    CrossRef Google Scholar

    [3]

    Mueller N S, Okamura Y, Vieira B G M, et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals[J]. Nature, 2020, 583(7818): 780−784.

    DOI: 10.1038/s41586-020-2508-1

    CrossRef Google Scholar

    [4]

    Solís D M, Taboada J M, Obelleiro F, et al. Toward ultimate nanoplasmonics modeling[J]. ACS Nano, 2014, 8(8): 7559−7570.

    DOI: 10.1021/nn5037703

    CrossRef Google Scholar

    [5]

    Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla R A. Fabrication of plasmonic supercrystals and their SERS enhancing properties[J]. ACS Omega, 2020, 5(40): 25485−25492.

    DOI: 10.1021/acsomega.0c03412

    CrossRef Google Scholar

    [6]

    Palmer S J, Xiao X F, Pazos-Perez N, et al. Extraordinarily transparent compact metallic metamaterials[J]. Nat Commun, 2019, 10(1): 2118.

    DOI: 10.1038/s41467-019-09939-8

    CrossRef Google Scholar

    View full references list
  • Author Information

    • Huang Xin, huangxin1318@link.tyut.edu.cn On this SiteOn Google Scholar
      • Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    • Shi Zuoyan On this SiteOn Google Scholar
      • Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    • Song Mingxia On this SiteOn Google Scholar
      • Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    • Corresponding author: Yu Ying, yuying@tyut.edu.cn On this SiteOn Google Scholar
      • College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    • Corresponding author: Liu Shaoding, liushaoding@tyut.edu.cn On this SiteOn Google Scholar
      • Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2024.240048
    Cite this Article
    Huang Xin, Shi Zuoyan, Song Mingxia, Yu Ying, Liu Shaoding. Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films. Opto-Electronic Engineering 51, 240048 (2024). DOI: 10.12086/oee.2024.240048
    Download Citation
    Article History
    • Received Date March 02, 2024
    • Revised Date March 31, 2024
    • Accepted Date April 01, 2024
    • Published Date June 24, 2024
    Article Metrics
    Article Views(1772) PDF Downloads(392)
    Share:
  • Related Articles

  • 金球尺寸
    /nm
    金球浓度
    /(nmol/L)
    金球体积
    /mL
    混合溶液
    /mL
    PFT
    /(mg/mL)
    1842.254.510
    203.32.254.510
    222.62.254.510
    251.82.254.510
    301.42.254.510
    View in article Downloads
[1]

García-Lojo D, Núñez-Sánchez S, Gómez-Graña S, et al. Plasmonic supercrystals[J]. Acc Chem Res, 2019, 52(7): 1855−1864.

DOI: 10.1021/acs.accounts.9b00213

CrossRef Google Scholar

[2]

Ross M B, Mirkin C A, Schatz G C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures[J]. J. Phys Chem C, 2016, 120(2): 816−830.

DOI: 10.1021/acs.jpcc.5b10800

CrossRef Google Scholar

[3]

Mueller N S, Okamura Y, Vieira B G M, et al. Deep strong light–matter coupling in plasmonic nanoparticle crystals[J]. Nature, 2020, 583(7818): 780−784.

DOI: 10.1038/s41586-020-2508-1

CrossRef Google Scholar

[4]

Solís D M, Taboada J M, Obelleiro F, et al. Toward ultimate nanoplasmonics modeling[J]. ACS Nano, 2014, 8(8): 7559−7570.

DOI: 10.1021/nn5037703

CrossRef Google Scholar

[5]

Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla R A. Fabrication of plasmonic supercrystals and their SERS enhancing properties[J]. ACS Omega, 2020, 5(40): 25485−25492.

DOI: 10.1021/acsomega.0c03412

CrossRef Google Scholar

[6]

Palmer S J, Xiao X F, Pazos-Perez N, et al. Extraordinarily transparent compact metallic metamaterials[J]. Nat Commun, 2019, 10(1): 2118.

DOI: 10.1038/s41467-019-09939-8

CrossRef Google Scholar

[7]

Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287(5460): 1989−1992.

DOI: 10.1126/science.287.5460.1989

CrossRef Google Scholar

[8]

Shevchenko E V, Ringler M, Schwemer A, et al. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties[J]. J Am Chem Soc, 2008, 130(11): 3274−3275.

DOI: 10.1021/ja710619s

CrossRef Google Scholar

[9]

Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers[J]. Nature Materials, 2006, 5(4): 265−270.

DOI: 10.1038/nmat1611

CrossRef Google Scholar

[10]

Vieira B G M, Mueller N S, Barros E B, et al. Plasmonic properties of close-packed metallic nanoparticle mono- and bilayers[J]. J Phys Chem C, 2019, 123(29): 17951−17960.

DOI: 10.1021/acs.jpcc.9b03859

CrossRef Google Scholar

[11]

Mueller N S, Vieira B G M, Höing D, et al. Direct optical excitation of dark plasmons for hot electron generation[J]. Faraday Discuss, 2019, 214(214): 159−173.

DOI: 10.1039/C8FD00149A

CrossRef Google Scholar

[12]

Mueller N S, Vieira B G M, Schulz F, et al. Dark interlayer plasmons in colloidal gold nanoparticle bi- and few-layers[J]. ACS Photonics, 2018, 5(10): 3962−3969.

DOI: 10.1021/acsphotonics.8b00898

CrossRef Google Scholar

[13]

Tong J C, Suo F, Ma J H Z, et al. Surface plasmon enhanced infrared photodetection[J]. Opto-Electron Adv, 2019, 2(1): 180026.

DOI: 10.29026/oea.2019.180026

CrossRef Google Scholar

[14]

Chiu C Y, Chen C K, Chang C W, et al. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties[J]. J Am Chem Soc, 2015, 137(6): 2265−2275.

DOI: 10.1021/ja509044q

CrossRef Google Scholar

[15]

Gómez-Graña S, Le Beulze A. Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies[J]. Mater Horiz, 2016, 3(6): 596−601.

DOI: 10.1039/C6MH00270F

CrossRef Google Scholar

[16]

Alvarez-Puebla R A, Agarwal A, Manna P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157−8161.

DOI: 10.1073/pnas.1016530108

CrossRef Google Scholar

[17]

Alba M, Pazos-Perez N, Vaz B, et al. Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering[J]. Angew Chem Int Ed, 2013, 52(25): 6459−6463.

DOI: 10.1002/anie.201302285

CrossRef Google Scholar

[18]

Yi C L, Liu H, Zhang S Y, et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry[J]. Science, 2020, 369(6509): 1369−1374.

DOI: 10.1126/science.aba8653

CrossRef Google Scholar

[19]

Chakraborty I N, Roy P, Rao A, et al. The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots[J]. J Mater Chem A, 2021, 9(12): 7422−7457.

DOI: 10.1039/D0TA12623C

CrossRef Google Scholar

[20]

Roy P, Devatha G, Roy S, et al. Electrostatically driven resonance energy transfer in an all-quantum dot based donor-acceptor system[J]. J Phys Chem Lett, 2020, 11(13): 5354−5360.

DOI: 10.1021/acs.jpclett.0c01360

CrossRef Google Scholar

[21]

Bai P, Yang S, Bao W, et al. Diversifying nanoparticle assemblies in supramolecule nanocomposites via cylindrical confinement[J]. Nano Lett, 2017, 17(11): 6847−6854.

DOI: 10.1021/acs.nanolett.7b03131

CrossRef Google Scholar

[22]

Macfarlane R J, Lee B, Jones M R, et al. Nanoparticle superlattice engineering with DNA[J]. Science, 2011, 334(6053): 204−208.

DOI: 10.1126/science.1210493

CrossRef Google Scholar

[23]

Auyeung E, Li T I N G, Senesi A J, et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra[J]. Nature, 2014, 505(7481): 73−77.

DOI: 10.1038/nature12739

CrossRef Google Scholar

[24]

Schulz F, Pavelka O, Lehmkühler F, et al. Structural order in plasmonic superlattices[J]. Nat Commun, 2020, 11(1): 3821.

DOI: 10.1038/s41467-020-17632-4

CrossRef Google Scholar

[25]

Song L P, Xu B B, Cheng Q, et al. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal “lift-on” thin film technology[J]. Sci Adv, 2021, 7(52): eabk2852.

DOI: 10.1126/sciadv.abk2852

CrossRef Google Scholar

[26]

Zheng Y Q, Zhong X L, Li Z Y, et al. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm[J]. Part Part Syst Char, 2014, 31(2): 266−273.

DOI: 10.1002/ppsc.201300256

CrossRef Google Scholar

[27]

Sun Q, Aguila B, Perman J A, et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 2018, 4(7): 1726−1739.

DOI: 10.1016/j.chempr.2018.05.020

CrossRef Google Scholar

[28]

韩莹莹, 陈盼盼, 王曼, 等. 基于悬链线纳米粒子超构表面的线偏振光SPPs定向激发[J]. 光电工程, 2022, 49(10): 220105.

DOI: 10.12086/oee.2022.220105

Han Y Y, Chen P P, Wang M, et al. SPPs directional excitation of linearly polarized light based on catenary nanoparticle metasurface[J]. Opto-Electron Eng, 2022, 49(10): 220105.

DOI: 10.12086/oee.2022.220105

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Corresponding author: Liu Shaoding, liushaoding@tyut.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films
    • Figure  1

      (a) Schematic illustration of the self-assembly and film transfer process of gold nanoparticles (NPs) induced by PFT at the water-n-hexane interface; (b) Scanning electron microscope (SEM) images of a monolayer gold nanoparticle film with a particle size of 20 nm and interparticle spacing of 1-2 nm. Scale bars are 1 μm, 200 nm, and 50 nm, respectively. Inset: Image of a monolayer gold nanoparticle film in a beaker; (c-f) Images of gold nanoparticle superlattice films with different numbers of layers transferred onto a PDMS substrate using a layer-by-layer stacking method. Images from (c) to (f) represent one layer to four layers, respectively

    • Figure  2

      Reflectance spectra (a) and transmission spectra (b) of gold nanoparticle films with a size of 20 nm, from one to six layers, with the solid black line indicating the simulation results and the red line indicating the experimental measurements

    • Figure  3

      Near-field distribution of a thin film of gold nanoparticles with a diameter of 20 nm and an interparticle spacing of 1 nm in (a) a single layer, (b) a bilayer, (c) a six-layer (λ = 638 nm), and (d) a six-layer (λ = 778 nm). The plasma pattern of current distribution through the interior of the nanoparticles is demonstrated next to it, and the dipole moments in the particles of each layer are indicated by the white arrows

    • Figure  4

      Reflectance spectra of gold nanoparticle superlattice films with different numbers of layers and diameters (20 nm - black curve, 25 nm - red curve, 30 nm - blue curve). (a) Experimental measurement results; (b) Numerical simulation results

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    Preparation and optical characterization of large-area self-assembled gold nanoparticle superlattice films
    • 金球尺寸
      /nm
      金球浓度
      /(nmol/L)
      金球体积
      /mL
      混合溶液
      /mL
      PFT
      /(mg/mL)
      1842.254.510
      203.32.254.510
      222.62.254.510
      251.82.254.510
      301.42.254.510
    • Table  1

      Solvent usage of gold nanoparticles of different sizes

        1/1