空间引力波探测望远镜多自由度形变测量方法解耦研究与噪声分析

罗健,宋婕,房思俊,等. 空间引力波探测望远镜多自由度形变测量方法解耦研究与噪声分析[J]. 光电工程,2024,51(2): 230211. doi: 10.12086/oee.2024.230211
引用本文: 罗健,宋婕,房思俊,等. 空间引力波探测望远镜多自由度形变测量方法解耦研究与噪声分析[J]. 光电工程,2024,51(2): 230211. doi: 10.12086/oee.2024.230211
Luo J, Song J, Fang S J, et al. Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope[J]. Opto-Electron Eng, 2024, 51(2): 230211. doi: 10.12086/oee.2024.230211
Citation: Luo J, Song J, Fang S J, et al. Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope[J]. Opto-Electron Eng, 2024, 51(2): 230211. doi: 10.12086/oee.2024.230211

空间引力波探测望远镜多自由度形变测量方法解耦研究与噪声分析

  • 基金项目:
    国家重点研发计划(2021YFC2202202)
详细信息
    作者简介:
    *通讯作者: 闫勇,yanyong5@mail.sysu.edu.cn
  • 中图分类号: O439

Decoupling study and noise analysis of multi-degree-of-freedom deformation measurement method for space gravitational wave detection telescope

  • Fund Project: Project supported by National Key Research and Development Program of China (2021YFC2202202)
More Information
  • 空间引力波探测望远镜是引力波探测卫星的核心载荷之一,它同时对传输光束进行扩束和缩束。光程稳定性是望远镜的核心指标之一,其与望远镜结构稳定性密切相关。为了满足引力波探测任务对望远镜提出的超高光程稳定性和结构稳定性要求,必须对望远镜结构形变测量进行研究。本文开展了对空间引力波探测望远镜多自由度形变测量的研究,重点解决多自由度测量的耦合问题,并对误差来源进行详细分析。在空间引力波探测望远镜的研制阶段,该测量方法的研究有望满足望远镜多自由度形变测量的需求,为望远镜设计提供多自由度形变的数据反馈,为望远镜光程稳定性研究提供指导。

  • Overview: The space gravitational wave detection telescope is one of the core payloads of the gravitational wave detection satellite, simultaneously expanding and contracting the transmitted beam. Optical path stability is one of the core indices for the telescope, closely related to its structural stability. To meet the ultra-high path stability and structural stability requirements posed by the gravitational wave detection mission, it is essential to study the structural deformation measurement of the telescope. Currently, there are still several shortcomings in the research of multi-degree-of-freedom deformation measurement methods for gravitational wave detection telescopes, such as inaccurate selection of measurement points, inability to decouple multi-degree-of-freedom coupling, and unclear identification of error sources in multi-degree-of-freedom measurement. This paper deeply investigates the high-precision measurement of structural deformation of space-borne telescopes designed for space gravitational wave detection. It preliminarily establishes a framework and method system for measuring the structural deformation of space-borne telescopes, theoretically describing the measurement principle of the method. The feasibility of this method applied to space gravitational wave detection is verified through simulation analysis and error decomposition. The paper focuses on resolving the issue of decoupling multiple degrees of freedom, establishing a mathematical model using analytical methods, and conducting preliminary validation using Zemax. Finally, noise analysis of the measurement system is carried out, with experimental testing of the main noise components in the measurement system, validating the correctness of the theoretical noise model proposed in this paper. The experimental results show that near 1 Hz, the displacement noise background of the single-link interferometer is 100 pm/Hz1/2. At 1 mHz in the low-frequency range, the displacement noise background reaches 10 nm/Hz1/2. The noise level of the measurement system below 1 mHz is mainly limited by environmental temperature noise, while above 10 mHz, it is primarily constrained by laser frequency noise, phase acquisition background noise, and vibration noise. During the development phase of the space gravitational wave detection telescope, the research on this measurement method is expected to fulfill the telescope's multi-degree-of-freedom deformation measurement needs. It also provides data feedback for telescope design and offers guidance for the study of the telescope's optical path stability.

  • 加载中
  • 图 1  三自由度形变测量系统结构组成示意图

    Figure 1.  Schematic diagram of the composition of a three-degree-of-freedom deformation measurement system

    图 2  三自由度形变测量系统示意图

    Figure 2.  Schematic diagram of the three-degree-of-freedom deformation measurement system

    图 3  测量点位置选择示意图

    Figure 3.  Schematic diagram of measurement point position selection

    图 4  三自由度形变测量解耦数学模型示意图

    Figure 4.  Schematic diagram of the decoupling mathematical model for the three-degree-of-freedom deformation measurement system

    图 5  Zemax光学系统仿真图

    Figure 5.  Zemax optical system simulation

    图 6  位移与相位关系图

    Figure 6.  Relationship between displacement and phase

    图 7  (a) 实际测量光路示意图;(b) Zemax光路建模图

    Figure 7.  (a) Schematic diagram of the actual measurement path; (b) Zemax optical path modeling diagram

    图 8  激光器频率本底噪声

    Figure 8.  Laser frequency noise background

    图 9  实验室温度与振动水平。(a) 温度测试图;(b) 振动测试图

    Figure 9.  Laboratory temperature and vibration level. (a) Temperature test chart; (b) Vibration test chart

    图 10  NI数据采集卡本底噪声

    Figure 10.  NI data acquisition card noise background

    图 11  光电探测器本底噪声

    Figure 11.  Photodetector noise background

    图 12  单链路干涉仪本底噪声

    Figure 12.  Background noise of the single chain interferometer

    表 1  多自由度测量方法的优缺点

    Table 1.  Advantages and disadvantages of multiple-degree-of-freedom measurement methods

    方法优点缺点
    电学法[20]电容测量精度高、稳定性好、测量速度快、反应时间快无法实现非接触测量,测量范围小
    电感测量精度高、对工作环境要求低
    光学法[21]光杠杆测量原理简单,易操作,稳定性高灵敏度低
    多路干涉响应速度快,灵敏度在1 mHz以上占有优势,
    测量范围更大,角度测量非线性更小
    结构复杂,对环境敏感,对结构复杂微
    变形的测量和表征能力有限
    差分波前角度测量简单高效只能进行角度测量且精度受限于探测器
    下载: 导出CSV

    表 2  测试镜刚体位移与光电探测器相位差关系

    Table 2.  Test the relationship between the rigid body displacement of the mirror and the phase difference received by the photodetector

    相对位移 相位差
    PD1PD2PD3
    初始位置000
    沿光轴方向+z平移20 nm0.470.470
    Rx方向旋转1.7 µrad0.660.470.61
    垂直光轴方向+y平移20 nm000.30
    下载: 导出CSV

    表 3  多自由度测量系统误差灵敏度分析

    Table 3.  Error sensitivity analysis of the measurement system with multiple degrees of freedom

    自由度比值
    zdI : S : α = 1 : 0 : 0
    RxdI : S : α= 10000 : 1 : 0
    ydI : S : α= 10000 : 1 : 1
    下载: 导出CSV

    表 4  望远镜形变测量系统测量光程噪声指标分配及要求

    Table 4.  Allocation and requirements of optical path noise indicators for the telescope deformation measurement system

    测量系统组成部分主要噪声源噪声分配
    (nm/Hz1/2@1 mHz)
    备注
    激光光源激光频率噪声3要求激光频率噪声δf小于4.2×107<Hz/Hz1/2@1 mHz
    前端光程耦合噪声声光调制耦合噪声1等效位移噪声<1 nm/Hz1/2@1 mHz
    光纤温度耦合噪声2光纤温度波动δT≤15 mK/Hz1/2@1 mHz
    集成光学
    器件平台
    温度位移耦合噪声8温度位移耦合系数dS/dT=70 nm/K,测试环境温度波动δT≤15 mK/Hz1/2@1 mHz
    振动位移耦合噪声2振动位移耦合系数dS/dx=0.3×10−3 m/m,测试环境振动波动δX≤1×10−3 m/s /Hz1/2@1 mHz
    空气折射率噪声2温度波动δT≤15 mK/Hz1/2@1 mHz
    偏振噪声2等效位移噪声<2 nm/Hz1/2@1 mHz
    杂散光噪声3控制杂散光强度相较于主光束低于−20 dB
    信号采集
    数据处理
    探测器耦合噪声1相对强度噪声需低于−100 dB/Hz@1 mHz
    相位读取噪声0.01要求相位计等效位移本底噪声是0.01 nm/Hz1/2@1 mHz
    测量系统总体噪声 10
    下载: 导出CSV
  • [1]

    Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102

    [2]

    Danzmann K, The LISA Study Team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Class Quantum Grav, 1996, 13(11A): A247. doi: 10.1088/0264-9381/13/11A/033

    [3]

    Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    [4]

    Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Class Quantum Grav, 37(18): 185013. https://doi.org/10.1088/1361-6382/aba66a.

    [5]

    Livas J, Sankar S. Optical telescope design study results[J]. J Phys Conf Ser, 2015, 610: 012029. doi: 10.1088/1742-6596/610/1/012029

    [6]

    王小勇,白绍竣,张倩,等. 空间引力波探测望远镜研究进展[J]. 光电工程, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

    Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

    [7]

    J. Sanjuán; A. Preston; D. Korytov, et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope[J]. Rev Sci Instrum, 2011, 82(12): 124501.

    [8]

    Desnoyers N, Goyette P, Leduc B, et al. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload[J]. Proc SPIE, 2017, 10372: 103720G. doi: 10.1117/12.2274311

    [9]

    范纹彤, 赵宏超, 范磊, 等. 空间引力波探测望远镜系统技术初步分析[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    Fan W T, Zhao H C, Fan L, et al. Preliminary analysis of space gravitational wave detection telescope system technology[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1-2): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    [10]

    Machado J C, Heinrich T, Schuldt T, et al. Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP[J]. Proc SPIE, 2008, 7018: 70183D. doi: 10.1117/12.789495

    [11]

    Spannagel R, Hamann I, Sanjuan J, et al. Dilatometer setup for low coefficient of thermal expansion materials measurements in the 140 K-250 K temperature range[J]. Rev Sci Instrum, 2016, 87(10): 103112. doi: 10.1063/1.4965813.

    [12]

    Spannagel R, Gohlke M, Schuldt T, et al. CTE measurement setup with 10 ppb/K sensitivity for characterizing lightweight and highly stable materials for space applications[J]. Proc SPIE, 2012, 8450: 84500Q. doi: 10.1117/12.926061

    [13]

    Sanjuán J, Korytov D, Mueller G, et al. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors[J]. Rev Sci Instrum, 2012, 83(11): 116107. doi: 10.1063/1.4767247

    [14]

    Verlaan A L, Hogenhuis H, Pijnenburg J, et al. LISA telescope assembly optical stability characterization for ESA[J]. Proc SPIE, 2012, 8450: 845003. doi: 10.1117/12.925112

    [15]

    Sang B L, Deng X Q, Peng B, et al. Dimensional stability ground test and in-orbit prediction of SiC telescope frame for space gravitational wave detection[J]. IEEE Access, 2022, 10: 21041−21047. doi: 10.1109/ACCESS.2022.3152490

    [16]

    李博宏, 罗健, 丘敏艳, 等. 引力波探测望远镜超低热变形桁架支撑结构设计技术[J]. 光电工程, 2023, 50(11): 230155. doi: 10.12086/oee.2023.230155

    Li B H, Luo J, Qiu M Y, et al. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope[J]. Opto-Electron Eng, 2023, 50(11): 230155. doi: 10.12086/oee.2023.230155

    [17]

    Yu X Z. Multi-degree of freedom optical metrology techniques[D]. Rochester: University of Rochester, 2017.

    [18]

    Klop W A, Verlaan A L. Dimensional stability testing in thermal vacuum of the CHEOPS optical telescope assembly[J]. Proc SPIE, 2016, 9904: 990437. doi: 10.1117/12.2232899

    [19]

    颜浩. 基于激光干涉的高精度多自由度光学传感研究[D]. 武汉: 华中科技大学, 2019.

    Yan H. Study on ultra-precision multi-degree-of-freedom optical measurement base on laser interferometry[D]. Wuhan: Huazhong University of Science and Technology, 2019.

    [20]

    余建平. 面向精密定位的平面电容式多自由度位移测量传感器关键技术研究[D]. 杭州: 浙江大学, 2013.

    Yu J P. Study on planar capacitive sensors for multiple-dimensional precision displacement measurement[D]. Hangzhou: Zhejiang University, 2013.

    [21]

    孙闯. 面向精密工程的多自由度测量方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    Sun C. Research on multi-degree-of-freedom measurement method for precision engineering[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2021.

    [22]

    赵凯, 范纹彤, 海宏文, 等. 望远镜光程稳定性测量方案设计及噪声理论分析[J]. 光电工程, 2023, 50(11): 230158. doi: 10.12086/oee.2023.230158

    Zhao K, Fan W T, Hai H W, et al. Design of optical path stability measurement scheme and theoretical analysis of noise in telescope[J]. Opto-Electron Eng, 2023, 50(11): 230158. doi: 10.12086/oee.2023.230158

  • 加载中

(13)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-08-30
修回日期:  2024-02-07
录用日期:  2024-02-07
刊出日期:  2024-02-29

目录

/

返回文章
返回