星载望远镜消光材料积分散射特性测试研究(英文)

刘巍, 李朝辉, 毛振, 等. 星载望远镜消光材料积分散射特性测试研究(英文)[J]. 光电工程, 2024, 51(2): 230206. doi: 10.12086/oee.2024.230206
引用本文: 刘巍, 李朝辉, 毛振, 等. 星载望远镜消光材料积分散射特性测试研究(英文)[J]. 光电工程, 2024, 51(2): 230206. doi: 10.12086/oee.2024.230206
Liu W, Li Z H, Mao Z, et al. Research on integrated scattering characteristics of extinctive materials for spaceborne telescopes[J]. Opto-Electron Eng, 2024, 51(2): 230206. doi: 10.12086/oee.2024.230206
Citation: Liu W, Li Z H, Mao Z, et al. Research on integrated scattering characteristics of extinctive materials for spaceborne telescopes[J]. Opto-Electron Eng, 2024, 51(2): 230206. doi: 10.12086/oee.2024.230206

星载望远镜消光材料积分散射特性测试研究(英文)

详细信息

Research on integrated scattering characteristics of extinctive materials for spaceborne telescopes

  • Fund Project: Project supported by National Key Research and Development Plan (2021YFC2202203)
More Information
  • 在散射理论的基础上,介绍了一种星载望远镜消光材料积分散射特性测试装置,实现对星载望远镜消光材料散射特性更为全面的测量。对积分散射理论、系统构造、系统性能进行了阐述。对系统进行建模仿真分析,得到结论:消光材料的散射特性在不同点位和入射角下存在明显差异,系统能够测量多种条件下消光材料的散射特性,并得到消光材料全面的散射特性分布。研究结果为根据消光材料特性进行针对性设计提供了更全面、更准确的散射特性分布,为杂散光的测量与抑制、高性能光学仪器的研制与装调以及计算光学等领域的研究提供了参考。为空间引力波探测星载望远镜系统的材料选型、特性研究、杂散光分析与抑制提供了基础。

  • Overview: Gravitational wave detection is a prominent and highly anticipated research area in modern science. With technological advancements and the development of scientific theories, our understanding of the techniques and methods for detecting gravitational waves has deepened. Gravitational waves are disturbances predicted by Einstein’s general theory of relativity, arising from the curvature of spacetime caused by mass and energy. The detection of gravitational waves holds significant importance in comprehending the evolution of the universe, black hole physics, and the origin of the cosmos, among other scientific inquiries. However, due to the extraordinarily weak intensity of gravitational waves, detection necessitates high-precision measurement devices and sophisticated technical means.

    As one of the key tools for detecting gravitational waves, space-based telescopes offer advantages such as high precision, high resolution, and the ability to conduct long-duration observations. However, these telescopes encounter interference during observations, including cosmic background and scattered light generated by the telescope itself. To these interferences, extinguishing materials are used to reduce scattered light. These materials possess the ability to absorb or scatter light, effectively minimizing light reflection and scattering and thereby enhancing observation accuracy and signal-to-noise ratio of telescopes. In order to gain a better understanding of the scattering characteristics of extinguishing materials, this study analyzes and examines the design features of scattering light measurement systems both domestically and internationally, building upon the foundations of scattering theory. By combining practical detection challenges and experiences, a test device for assessing the integral scattering characteristics of extinguishing materials employed in space-based telescopes is devised, facilitating more comprehensive measurements of their scattering characteristics. Through simulation modeling and comparisons with actual measurements, it is concluded that the surface roughness of components and the incident angle of light impact the distribution of component scattering, especially in different materials where scattering characteristics demonstrate changes with increasing incident angles. Consequently, achieving precise measurements of the scattering characteristics distribution of components holds paramount importance in cutting-edge design endeavors. This research provides a more comprehensive and accurate understanding of the distribution of scattering characteristics based on the specific properties of extinguishing materials, serving as a valuable reference for stray light measurement and suppression, development and calibration of high-performance optical instruments, and research within the field of computational optics, among others. Ultimately, it establishes a foundation for material selection, characteristic exploration, stray light analysis, and suppression in the context of space-based gravitational wave detection telescopes.

  • 加载中
  • Figure 1.  Gravitational wave detection

    Figure 2.  Selection of light-absorbing materials

    Figure 3.  Scatter plot coordinate system schematic

    Figure 4.  Multivariate high-precision measurement system for element scattering characteristic distribution

    Figure 5.  Simulation results of different surface characteristics

    Figure 6.  Simulation results of different incident angles

    Figure 7.  TIS result comparison

    Table 1.  Changes in the number of rays with simulation results (SB-3)

    NumberNumber of light (rings)Detector response result
    11001.0908e-6
    22008.5724e-7
    35001.2615e-6
    46001.2585e-6
    57001.3414e-6
    68001.3944e-6
    710001.2962e-6
    812001.2357e-6
    915001.2872e-6
    下载: 导出CSV

    Table 2.  Simulation results of TIS characteristics of material surface

    Incident angleWhiteboardSB-3TIS
    1.0779e-41.2962e-60.01203
    20°9.8612e-51.2853e-60.01303
    40°1.0406e-41.4725e-60.01415
    60°9.7901e-52.317e-60.02366
    下载: 导出CSV
  • [1]

    Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

    [2]

    Zhang Y H, Zhong Z Q, Zhang B. Analysis of surface scattering characteristics of ultra-smooth optical components in gravitational wave detection system[J]. Opto-Electron Eng, 2023, 50(11): 230222. doi: 10.12086/oee.2023.230222

    [3]

    Detrio J A, Miner S M. Standardized total integrated scatter measurements of optical surfaces[J]. Opt Eng, 1985, 24(3): 243419. doi: 10.1117/12.7973499

    [4]

    Chen Y S. A method for measuring the total integrated scattering from laser mirrors[J]. Acta Opt Sin, 1984, 4(3): 285−288. doi: 10.3321/j.issn:0253-2239.1984.03.019

    [5]

    Stover J C. Optical Scattering: Measurement and Analysis[M]. New York: McGraw-Hill, 1990.

    [6]

    Grochocki F, Fleming J. Stray light testing of the OLI telescope[J]. Proc SPIE, 2010, 7794: 77940W. doi: 10.1117/12.862225

    [7]

    Liebe C C, Scherr L M. Sun-induced veiling glare in dusty camera optics[J]. Opt Eng, 2004, 43(2): 493−499. doi: 10.1117/1.1635835

    [8]

    Peterson G L. Stray light test station for measuring point source transmission and thermal background of visible and infrared sensors[J]. Proc SPIE, 2008, 7069: 70690M. doi: 10.1117/12.794898

    [9]

    Fest E C. Stray Light Analysis and Control[M]. Bellingham: SPIE, 2013.

    [10]

    Liao Z B, Jiao W C, Fu R M. Veiling glare index calculation for refract optical system[J]. Acta Photonica Sin, 2011, 40(3): 424. doi: 10.3788/gzxb20114003.0424

    [11]

    Coppens J, Franssen L, van den Berg T J T P. Reliability of the compensation comparison method for measuring retinal stray light studied using Monte-Carlo simulations[J]. J Biomed Opt, 2006, 11(5): 054010. doi: 10.1117/1.2357731

    [12]

    Dittman M G, Donley E, Grochocki F. Deterministic sequential stray light analysis[J]. Proc SPIE, 2010, 7794: 77940T. doi: 10.1117/12.860861

    [13]

    Ashikhmin M, Shirley P. An anisotropic phong BRDF model[J]. J Graphics Tools, 2000, 5(2): 25−32. doi: 10.1080/10867651.2000.10487522

    [14]

    Schlick C. An inexpensive BRDF model for physically-based rendering[J]. Computer Graphics Forum, 1994, 13(3): 233−246. doi: 10.1111/1467-8659.1330233

    [15]

    Snyder W C, Wan Z M. BRDF models to predict spectral reflectance and emissivity in the thermal infrared[J]. IEEE Trans Geosci Remote Sens, 1998, 36(1): 214−225. doi: 10.1109/36.655331

    [16]

    Lawrence J, Rusinkiewicz S, Ramamoorthi R. Efficient BRDF importance sampling using a factored representation[J]. ACM Trans Graphics, 2004, 23(3): 496−505. doi: 10.1145/1015706.1015751

    [17]

    Boynton P A, Kelley E F. Stray light compensation in small area contrast measurements of projection displays[J]. Proc SPIE, 2002, 4657: 122−130. doi: 10.1117/12.463788

    [18]

    Zhong X, Jia J Q. Stray light removing design and simulation of spaceborne camera[J]. Opt Precis Eng, 2009, 17(3): 621−625. doi: 10.3321/j.issn:1004-924X.2009.03.025

    [19]

    Leviton D B, Gardner L D, Fineschi S, et al. White-light stray light test of the SOHO UVCS[J]. Proc SPIE, 1998, 3443: 50−60. doi: 10.1117/12.333613

    [20]

    Fleming J, Grochocki F, Finch T, et al. New stray light test facility and initial results[J]. Proc SPIE, 2008, 7069: 70690O. doi: 10.1117/12.798920

    [21]

    Blarre L, Mestreau A. Stray light characterization of optical systems[J]. Proc SPIE, 1996, 2775: 279−286. doi: 10.1117/12.246755

    [22]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 光学系统杂(散)光测量方法: GB/T 10988–2009[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Veiling glare of optical systems-methods of measurement: GB/T 10988–2009[S]. Beijing: Standards Press of China, 2009.

  • 加载中

(8)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-08-24
修回日期:  2024-01-11
录用日期:  2024-01-11
网络出版日期:  2024-03-29
刊出日期:  2024-02-29

目录

/

返回文章
返回