基于离轴四反的空间引力波探测激光发射望远镜设计

范子超,谈昊,莫言,等. 基于离轴四反的空间引力波探测激光发射望远镜设计[J]. 光电工程,2023,50(11): 230194. doi: 10.12086/oee.2023.230194
引用本文: 范子超,谈昊,莫言,等. 基于离轴四反的空间引力波探测激光发射望远镜设计[J]. 光电工程,2023,50(11): 230194. doi: 10.12086/oee.2023.230194
Fan Z C, Tan H, Mo Y, et al. Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission[J]. Opto-Electron Eng, 2023, 50(11): 230194. doi: 10.12086/oee.2023.230194
Citation: Fan Z C, Tan H, Mo Y, et al. Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission[J]. Opto-Electron Eng, 2023, 50(11): 230194. doi: 10.12086/oee.2023.230194

基于离轴四反的空间引力波探测激光发射望远镜设计

  • 基金项目:
    国家自然科学基金资助项目 (12274156);深圳市基础研究项目 (JCYJ20210324115812035);中国科学院重点部署青年培育项目(JCPYJJ-22007)
详细信息
    作者简介:
    *通讯作者: 马冬林,madonglin@hust.edu.cn
  • 中图分类号: O439

Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission

  • Fund Project: Project supported by the National Natural Science Foundation of China (12274156), Technology and Innovation Commission of Shenzhen Municipality (JCYJ20210324115812035), and Key Research Program of the Chinese Academy of Sciences (JCPYJJ-22007)
More Information
  • 用于空间引力波探测的星载望远镜在航天器间进行激光的传输以支持精密干涉测量系统,因此望远镜的光程稳定性已经成为一项关键的技术指标。在此系统中,光瞳像差与传统的像平面像差相比在了解系统光程稳定性需求、评价望远镜成像质量以及抑制抖动光程耦合噪声等方面可提供更深刻的见解。本文基于传统像平面像差理论和光瞳像差理论,建立了望远镜的初始结构,然后利用光学软件Zemax的宏编程实现了光瞳像差和像平面像差的自动校正,从而实现了高性能星载望远镜的设计,仿真结果显示满足天琴任务的需求。

  • Overview: The TianQin project is a planned space-based gravitational wave observatory in China, consisting of a formation of three spacecraft, each equipped with two telescopes for laser beam transmission and reception. The TianQin mission utilizes heterodyne interferometry to achieve precise distance measurements between test masses. The optical telescopes transmit measurement beams between the spacecraft, forming the long arms of the heterodyne interferometer. Due to the distinct objectives, the telescope system design for the space-based gravitational-wave observatory have slightly different design criteria compared to ordinary telescopes. In addition to meeting the requirements for diffraction-limited imaging quality, maintaining optical path stability is crucial. Wavefront aberrations caused by the telescopes and angular misalignment due to field of view jitter introduce changes in the optical path signal, inevitably generating tilt-to-length coupling noise. Relevant research indicates that the coordinate offset of the chief rays on the pupil plane will cause the TTL noise to exceed the expected level in the interferometer measurement system. While rarely mentioned in conventional optical systems, this system evidently provides a typical application for pupil aberrations. Specifically, the pupil aberration is the preferred option for evaluating telescope aberrations, understanding the requirements for optical path stability, and suppressing tilt-to-length coupling noise. Based on the theory of traditional imaging aberration and pupil aberration theory, the initial structure of the telescope is established, and the automatic correction of pupil aberration and image plane aberration is achieved through macro programming in the commercial optical software Zemax, enabling the design of a high-performance spaceborne telescope. The design results show that the pupil aberration of the system has been corrected, the RMS wavefront error of the scientific field of view is less than λ/200. The maximum value of tilt-to-length coupling noise within a ±300 μrad field of view is 0.0144 nm/µrad, meeting the requirements of the Tianqin mission. The introduction of the concept of pupil aberrations has led to a rapid convergence of TTL noise, clearly providing designers with a new perspective to address the original design issue. Moreover, the pupil aberration evaluation metrics mentioned in this paper can offer an alternative optimization target for other systems requiring pupil aberration correction. This could potentially evolve into a conventional tool in optical design in the future. We believe that our design approach can provide valuable guidance for other space-based gravitational wave detection projects and the design of similar optical systems for space telescopes.

  • 加载中
  • 图 1  发射高斯光束的夫琅禾费衍射模型

    Figure 1.  Fraunhofer's diffraction model for transmitting Gaussian beam

    图 2  远场波前。(a)衍射强度分布 ;(b)衍射相位分布; (c)生成的λ/40波前误差;(d)带有λ/40波前误差的远场相位分布

    Figure 2.  Far-field wavefront. (a) The diffraction intensity distribution; (b) The diffraction phase distribution; (c) The generated phase with wavefront error of λ/40; (d) The diffraction phase distribution of the far field with wavefront error

    图 3  望远镜像差和TTL耦合噪声模型

    Figure 3.  Modeling of wavefront aberration and TTL coupling noise

    图 4  光瞳成像过程中主光线和边缘光线的作用

    Figure 4.  Function of the chief ray and marginal ray in pupil imaging

    图 5  初始结构的近轴光线追迹示意图

    Figure 5.  Schematic diagram of paraxial ray tracing of the initial design

    图 6  天琴望远镜设计的光学布局

    Figure 6.  Optical layout of the TianQin telescope design

    图 7  望远镜科学视场的波前误差

    Figure 7.  Wavefront error over the scientific field of view

    图 8  出瞳位置的主光线点列图

    Figure 8.  Chief ray spot diagram in the exit pupil

    图 9  光程信号斜率随倾斜角度的变化曲线

    Figure 9.  Curve of slope of pathlength signal with tilt angle

    表 1  天琴望远镜的光学指标

    Table 1.  Specifications of the TianQin telescope

    系统参数设计需求
    波长1064 nm
    波前质量(设计残余像差)$ \le \mathrm{\lambda } $/300 RMS@1064 nm
    捕获视场±200 µrad
    科学视场±7 µrad
    入瞳直径220 mm
    放大倍率40×
    背向杂散光功率<10−10 of laser power
    光程稳定性TTL≤0.025 nm/μrad
    下载: 导出CSV

    表 2  天琴望远镜的同轴初始结构设计参数

    Table 2.  Coaxial initial structure parameters of the TianQin telescope

    表面曲率半径/mm厚度/mm圆锥系数
    主镜−643.455−300−0.929
    次镜−47.498350
    三镜−188.985−60
    四镜Infinity
    像面
    下载: 导出CSV

    表 3  离轴结构设计参数

    Table 3.  Fundamental parameters of final off-axial structures

    表面半径/mm厚度/mm圆锥系数Y偏心/mmX倾斜/(°)尺寸/mm
    主镜−708.33−320.02−0.95−180230
    次镜−75.09382.38−5.4155
    三镜−195.52−19.1716.330.09−8.12.5
    四镜49.01718.27−7.73−5.59.1
    像面
    下载: 导出CSV

    表 4  离轴结构中的偶次非球面系数

    Table 4.  Even-order aspheric coefficients of final off-axial structures

    表面四阶项六阶项八阶项十阶项
    副镜−1.31E−064.63E−10−1.74E−133.73E−17
    三镜5.34E−033.05E−03−3.875E−03−1.59E−03
    四镜−5.68E−05−5.64E−05−4.019E−082.31E−10
    下载: 导出CSV

    表 5  波前误差Zernike Fringe展开式

    Table 5.  Wavefront error in the form of Zernike Fringe series expansion

    序数系数ai多项式Zi序数系数多项式
    Z1−0.00461Z200.001969(5ρ2 − 4) ρ3 sin3θ
    Z20.005705ρ cosθZ210.001095(15ρ4 − 20ρ2 + 6) ρ2 cos2θ
    Z3−0.01953ρ sinθZ22−3.44E−06(15ρ4 − 20ρ2 + 6) ρ2 sin2θ
    Z40.0083562ρ2 − 1Z237.57E−07(35ρ6 − 60ρ4 + 30ρ2 − 4) ρ cosθ
    Z50.049601ρ2 cos2θZ24−0.0003(35ρ6 − 60ρ4 + 30ρ2 − 4) ρ sinθ
    Z6−0.01931ρ2 sin2θZ25−2.57E−0570ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1
    Z70.010996(3ρ2 − 2) cosθZ260.000114ρ5 cos5θ
    Z80.021988(3ρ2 − 2) sinθZ27−0.00054ρ5 sin5θ
    Z90.0019576ρ4 − 6ρ2 + 1Z28−0.0001(6ρ2−5) ρ4 cos5θ
    Z100.022299ρ3 cos3θZ29−1.46E−05(6ρ2−5) ρ4 sin5θ
    Z110.016406ρ3 sin3θZ30−2.73E−07(21ρ4 − 30ρ2 + 10) ρ3 cos3θ
    Z12−0.00045(4ρ2 − 3) ρ2 cos2θZ315.70E−05(21ρ4 − 30ρ2 + 10) ρ3 sin3θ
    Z130.003273(4ρ2 − 3) ρ2 sin2θZ322.04E−05(56ρ6 − 105ρ4 + 60ρ2 − 10) ρ2 cos2θ
    Z140.0000082(10ρ4 − 12ρ2 + 3) ρ cosθZ332.02E−07(56ρ6 − 105ρ4 + 60ρ2 − 10) ρ2 sin2θ
    Z15−0.00074(10ρ4 − 12ρ2 + 3) ρ sinθZ34−5.12E−10(126ρ8 − 280ρ6 + 210ρ4 − 60ρ2 + 5) ρ cosθ
    Z16−0.000620ρ6 − 30ρ4 + 12ρ2 − 1Z35−4.72E−06(126ρ8−280ρ6+210ρ4−60ρ2+5) ρ sinθ
    Z17−0.00513ρ4 cos4θZ36−3.21E−07(252ρ10 − 630ρ8 − 560ρ6 − 210ρ4 + 30ρ2 − 1)
    Z18−0.00135ρ4 sin4θZ372.29E−08924ρ12 − 2772ρ10 + 3150ρ8 − …
    1680ρ6 + 420ρ4 − 42ρ2 + 1
    Z190.000825(5ρ2 − 4) ρ3 cos3θ
    下载: 导出CSV
  • [1]

    Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102

    [2]

    Acernese F, Agathos M, Agatsuma K, et al. Advanced Virgo: a second-generation interferometric gravitational wave detector[J]. Class Quantum Gravity, 2015, 32(2): 024001. doi: 10.1088/0264-9381/32/2/024001

    [3]

    Wanner G. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA[D]. Hannover: Leibniz University Hannover, 2010: 1–106.

    [4]

    Danzmann K. LISA mission overview[J]. Adv Space Res, 2000, 25(6): 1129−1136. doi: 10.1016/S0273-1177(99)00973-4

    [5]

    Cornelisse J W. Lisa mission and system design[J]. Class Quantum Gravity, 1996, 13(11A): A251−A258. doi: 10.1088/0264-9381/13/11A/034

    [6]

    Kawamura S, Ando M, Seto N, et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO[J]. Prog Theor Exp Phys, 2021, 2021(5): 05A105. doi: 10.1093/ptep/ptab019

    [7]

    Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    [8]

    Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: a concise overview[J]. Prog Theor Exp Phys, 2021, 2021(5): 05A108. doi: 10.1093/ptep/ptaa083

    [9]

    Schuster S, Wanner G, Tröbs M, et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Appl Opt, 2015, 54(5): 1010−1014. doi: 10.1364/AO.54.001010

    [10]

    Wanner G, Heinzel G, Kochkina E, et al. Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams[J]. Opt Commun, 2012, 285(24): 4831−4839. doi: 10.1016/j.optcom.2012.07.123

    [11]

    Schuster S, Tröbs M, Wanner G, et al. Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system[J]. Opt Express, 2016, 24(10): 10466−10475. doi: 10.1364/OE.24.010466

    [12]

    Sasso C P, Mana G, Mottini S. The LISA interferometer: impact of stray light on the phase of the heterodyne signal[J]. Class Quantum Gravity, 2019, 36(7): 075015. doi: 10.1088/1361-6382/ab0a15

    [13]

    Spector A, Mueller G. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors[J]. Class Quantum Gravity, 2012, 29(20): 205005. doi: 10.1088/0264-9381/29/20/205005

    [14]

    Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Gravity, 2020, 37(6): 065005. doi: 10.1088/1361-6382/ab6adf

    [15]

    Livas J C, Arsenovic P, Crow J A, et al. Telescopes for space-based gravitational wave missions[J]. Opt Eng, 2013, 52(9): 091811. doi: 10.1117/1.OE.52.9.091811

    [16]

    Mi Z X, Li Z X, Zhang X D. Construction of a compact off-axis three-mirror reflective system[J]. Appl Opt, 2022, 61(9): 2424−2431. doi: 10.1364/AO.450953

    [17]

    Xu S, Cui Z, Qi B. Compensation factors for 3rd order coma in three mirror anastigmatic (TMA) telescopes[J]. Opt Express, 2018, 26(1): 298−310. doi: 10.1364/OE.26.000298

    [18]

    Ji H R, Zhu Z B, Tan H, et al. Design of a high-throughput telescope based on scanning an off-axis three-mirror anastigmat system[J]. Appl Opt, 2021, 60(10): 2817−2823. doi: 10.1364/AO.421998

    [19]

    Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proc SPIE, 2014, 9143: 914314. doi: 10.1117/12.2056824

    [20]

    田思恒, 黄永梅, 徐杨杰, 等. 利用离焦光斑的离轴望远镜失调校正方法研究[J]. 光电工程, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

    Tian S H, Huang Y M, Xu Y J, et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

    [21]

    McNamara P W. Development of optical techniques for space-borne laser interferometric gravitational wave detectors[D]. Glasgow: University of Glasgow, 1998: 1–144.

    [22]

    Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040

    [23]

    Livas J, Sankar S, West G, et al. eLISA telescope in-field pointing and scattered light study[J]. J Phys Conf Ser, 2017, 840: 012015. doi: 10.1088/1742-6596/840/1/012015

    [24]

    牛帅旭, 蒋晶, 唐涛, 等. 望远镜中扰动抑制的Youla控制器优化设计[J]. 光电工程, 2020, 47(9): 190547. doi: 10.12086/oee.2020.190547

    Niu S X, Jiang J, Tang T, et al. Optimal design of Youla controller for vibration rejection in telescopes[J]. Opto-Electron Eng, 2020, 47(9): 190547. doi: 10.12086/oee.2020.190547

    [25]

    Wang Z, Yu T, Zhao Y, et al. Research on telescope TTL coupling noise in intersatellite laser interferometry[J]. Photonic Sens, 2020, 10(3): 265−274. doi: 10.1007/s13320-019-0574-5

    [26]

    Zhao Y, Shen J, Fang C, et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Appl Opt, 2021, 60(2): 438−444. doi: 10.1364/AO.405467

    [27]

    Lehan J P, Howard J M, Li H, et al. Pupil aberrations in the LISA transceiver design[J]. Proc SPIE, 2020, 11479: 114790D. doi: 10.1117/12.2566373

    [28]

    ESA/SRE 2011 LISA assessment study report (Yellow Book)[EB/OL]. (2011−02)[2023−06]. https://sci.esa.int/documents/35005/36499/1567258681608-LISA_YellowBook_ESA-SRE-2011–3_Feb2011.pdf.

    [29]

    Mahajan V N. Strehl ratio for primary aberrations in terms of their aberration variance[J]. J Opt Soc Am, 1983, 73(6): 860−861. doi: 10.1364/JOSA.73.000860

    [30]

    Livas J C, Sankar S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proc SPIE, 2016, 9904: 99041K. doi: 10.1117/12.2233249

    [31]

    Chwalla M, Danzmann K, Barranco G F, et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Class Quantum Gravity, 2016, 33(24): 245015. doi: 10.1088/0264-9381/33/24/245015

    [32]

    Gross H. Handbook of Optical Systems[M]. Weinheim: Wiley-VCH, 2005: 1–49.

    [33]

    Sasián J. Theory of sixth-order wave aberrations[J]. Appl Opt, 2010, 49(16): D69−D95. doi: 10.1364/AO.49.000D69

    [34]

    Fan Z C, Zhao L J, Cao S Y, et al. High performance telescope system design for the TianQin project[J]. Class Quantum Gravity, 2022, 39(19): 195017. doi: 10.1088/1361-6382/ac8b57

    [35]

    Lakshminarayanan V, Fleck A. Zernike polynomials: a guide[J]. J Mod Opt, 2011, 58(7): 545−561. doi: 10.1080/09500340.2011.554896

  • 加载中

(10)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-08-08
修回日期:  2023-10-18
录用日期:  2023-10-19
刊出日期:  2023-12-29

目录

/

返回文章
返回