New website getting online, testing
Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves
  • Abstract

    All-metal metasurfaces are structural arrays composed of sub-wavelength metal units, which exhibit high efficiency and large bandwidth in phase manipulation of electromagnetic waves. Compared with metal-dielectric hybrid metasurfaces, all-metal metasurfaces have excellent thermal and mechanical properties, such as high-temperature resistance, high strength, and good ductility, which enable them to be applied in extremely complex environments such as high temperature and high pressure. In this paper, we briefly summarize the recent research progress based on all-metal metasurfaces. We mainly introduce their applications in the construction of highly efficient and multi-functional planar optical devices as well as multi-spectrum electromagnetic stealth, and provide an outlook of the future direction of its development.

    Keywords

  • 全金属超表面在电磁波调控方面所表现出的优异性能,使其广泛用于各类光学器件与应用[-]。本文对近年来基于全金属超表面的电磁波相位调控技术进行归纳总结,首先介绍了基于全金属超表面构建的高效率平面光学器件,然后阐述了全金属超表面在电磁隐身领域中的应用,最后进行总结并对全金属超表面的未来发展趋势进行展望。

    超表面是一种可以在亚波长范围内对电磁波的振幅、相位以及偏振态等光学属性进行灵活调控的人工二维结构,它突破了超材料三维结构的限制,有利于光学系统向轻量化、微型化方向发展。2011年,美国哈佛大学Capasso教授团队提出了广义折反射定律,通过调节V型金属天线的夹角和臂长,产生了一定的相位梯度,从而实现了光的异常折反射现象[]。该工作引发了学术界对平面光学的研究热潮,使得基于超表面的电磁波相位调控技术得到了快速发展,涌现出一系列的新型功能器件与应用,如光聚焦与成像[-]、全息显示[-]、涡旋光束发生器[-]等。

    2013年,Monticone等人根据理论分析与计算得到,超薄透射型超表面的理论效率极限为25%[],而实际加工出的器件效率通常不足理论极限值的一半,这极大限制了超表面的应用。因此,如何提高超表面的工作效率成为研究人员关注的重点话题。有学者采用多层超表面来提高两种圆偏振光之间的偏振转换效率[-],突破了单层透射型超表面的效率极限,但这也增加了材料的厚度和结构复杂度。随后,为了摆脱金属结构的欧姆损耗问题,研究人员采用低损耗的高折射率介质材料来构造超表面[-],从而显著提高了器件的工作效率。除此之外,采用反射式结构设计也可以显著提高超表面器件的效率。常用的反射式设计方式为金属-介质-金属(metal-insulator-metal,MIM)“三明治”构型[-],包括顶层的金属天线、中间介质层,以及底层的金属反射衬底。利用该方法,可以使得超表面的工作效率达到80%以上。2018年,研究人员提出一种新的反射式超表面,该结构由亚波长金属光栅和金属反射衬底组成,是一种全金属化的超表面。他们利用几何相位原理调控电磁波散射,结合金属材料的低辐射特性,在红外波段同时实现了极低的反射率与辐射率,并构建了高效率的全息器件[]。相较于MIM型设计,全金属超表面避免了由法布里-珀罗谐振腔引起的谐振模式,降低了光波反射时金属结构的欧姆损耗,从而进一步提高了超表面的工作效率和带宽[]。此外,金属材料通常具有优良的机械、热学等性能,如强度大、韧性好、耐高温、良好的导电导热性等。这使得全金属超表面不仅能够在多物理场调控中发挥重要作用,还有望应用于高温高压等极端复杂环境中。

    全金属超表面是由亚波长金属单元所组成的结构阵列,其调控电磁波相位的方式同其他超表面一样,包括共振相位、几何相位以及传播相位等[]。目前,使用最广泛的是基于几何相位原理进行设计,常见的几种单元结构如图1所示,分别为光栅结构、纳米砖结构、悬链线结构以及多重旋转对称结构等[-, -]。值得一提的是,电磁波与全金属结构相互作用的物理过程可以通过悬链线模型解释[, , -]。通过控制光栅和纳米砖结构的取向角可以产生二倍于取向角的相位延迟,从而实现局域相位调控。随着悬链线光学的发展,将全金属设计和悬链线结构结合,则可以实现电磁波相位的高效连续调控。之后,广义几何相位的出现进一步丰富了超表面光场调控的自由度,利用具有多重旋转对称性的单元结构可以产生数倍于旋转角的相位延迟。目前,全金属超表面已被广泛应用于各类光学器件的设计,如偏振转换、全息显示以及涡旋光束发生器等。此外,得益于金属材料优良的热学、力学等特性,其在电磁隐身领域也发挥出了重要作用,下面将围绕这两类应用展开详细描述。

    Figure 1. Schematic diagram of the typical geometric phase-type building blocks and all-metal metasurfaces. The first and second quadrants show the metallic nanobrick and grating unit structures and the designed electromagnetic stealth devices[36, 46], holographic display device[37], and vortex beam generator[47]; the third quadrant shows a catenary metal unit structure and the designed circularly polarized beam splitter[48], optical wave focusing device[49]; the fourth quadrant shows the unit structure with multi-fold rotational symmetry and the designed wavefront modulation device[50] and rotational Doppler effect detector[51]
    Full-Size Img PowerPoint

    Schematic diagram of the typical geometric phase-type building blocks and all-metal metasurfaces. The first and second quadrants show the metallic nanobrick and grating unit structures and the designed electromagnetic stealth devices[, ], holographic display device[], and vortex beam generator[]; the third quadrant shows a catenary metal unit structure and the designed circularly polarized beam splitter[], optical wave focusing device[]; the fourth quadrant shows the unit structure with multi-fold rotational symmetry and the designed wavefront modulation device[] and rotational Doppler effect detector[]

    Figure 5. All-metal metasurfaces based on split-ring resonators. (a) Schematic diagram of the terahertz metasurface[73]; (b-d) Simulation results of the terahertz metasurface, including anomalous reflection, focusing, vortex beam generation[74]; (e) All-metal metasurface for simultaneous manipulation of electromagnetic waves and acoustic waves[75]; (f-h) Calculations results of multiple-beam generation,  scattering diffusion, and beam steering for both electromagnetic waves and acoustic waves[75]
    Full-Size Img PowerPoint

    All-metal metasurfaces based on split-ring resonators. (a) Schematic diagram of the terahertz metasurface[]; (b-d) Simulation results of the terahertz metasurface, including anomalous reflection, focusing, vortex beam generation[]; (e) All-metal metasurface for simultaneous manipulation of electromagnetic waves and acoustic waves[]; (f-h) Calculations results of multiple-beam generation, scattering diffusion, and beam steering for both electromagnetic waves and acoustic waves[]

    利用全金属超表面进行光学多参量调控,可以实现一系列多功能光学器件[-]。Du等人采用铝纳米砖结构,利用其取向简并性提供连续的振幅调制以及二元的相位调控,通过点源算法优化出铝纳米砖的取向分布进而匹配目标振幅和相位,如图4(a)所示,同时实现了近场灰度显示和三维全息成像[],如图4(b)所示。Zhang等人采用SP光刻技术制备了一种用于实现彩色打印和全息成像的超薄全金属超表面[],如图4(c)所示,根据匹配得到的振幅分布,在Gerchberg-Saxton 算法下优化得到相位分布,再将不同通道的相位信息进行编码。在宽带非相干光源的照明下,打印图像会随着观察角度发生变化,并且利用入射光的偏振态可以实现虚假颜色与真实颜色的转换。在相干光源的照明下,该器件在远场可以实现全息显示,并且通过解密三个不同波长的全息图可以得到加密后的信息,如图4(d)所示。Cheng等人提出一种用于实现偏振转换的全金属超表面[],通过调整纳米砖结构的几何参数,不仅实现了线偏振态到其正交偏振态的转换,在356.5~536.5 THz范围内偏振转换效率超过90%,而且实现了线偏振态到圆偏振态的转换,在336.5~544.5 THz范围内其偏振消光比的绝对值大于10 dB。

    目前,全金属超表面已被应用于太赫兹波操纵、3D制造、多物理场调控等。2022年,Wang等人采用金属开口谐振环结构设计了一种宽带、高效的多功能太赫兹超表面[],如图5(a)所示。该结构能够将入射的圆偏振光转化为手性相反的圆偏振光,在0.8-1.65 THz范围内转换效率超过95%。进一步,通过控制开口谐振环的取向角实现了反射波相位的控制,如图5(b)所示。图5(c)5(d)为聚焦及涡旋光束产生的仿真结果,表明该器件具有良好的波前操纵能力。2022年,Zhu等人利用3D打印在微波波段制备了一种全金属超表面,以实现双频圆偏振波的转换[]。当左旋圆偏振光入射时,该器件不仅可以通过垂直调整单元结构的位置产生所需要的传播相移,将低频入射光转化为右旋圆偏振光并偏转到特定角度,还可以与通过旋转金属单元引入的几何相移相结合,将高频入射的左旋圆偏振光以另一角度进行反射。此外,全金属超表面能够在多物理场调控中发挥重要作用。例如在2019年,Cui等人基于铝材料制备了一种可同时调控电磁波与声波的超表面[],如图5(e)所示,所设计的开口谐振环结构在50-100 mm的波长范围内相位响应超过了300°,振幅响应均在0.99以上。基于此,分别对多波束产生、漫反射以及波束偏转等功能进行了验证,如图5(f-h)所示。相较于MIM型超表面,该器件采用全金属材料设计,在降低制造难度的同时,也满足了实际应用中高强度、延展性好以及耐高温等物理属性要求。

    上述全金属超表面均是通过离散的单元结构来构建,这会导致波前采样不足从而影响器件的工作效率以及信噪比[]。Pu等人于2015年提出了悬链线结构光学[],为连续精准地调控电磁波相位提供了一种行之有效的方法,随之涌现出一系列高效、宽带的平面光学器件与应用[-]。随着悬链线光学的发展,研究人员将全金属设计与悬链线结构相结合,开发出了更为高效的平面光学器件。图3(a)所示为基于金属悬链线结构设计的圆偏振波分束器[],该器件能够将入射的线偏振光高效地分离为左旋圆偏振光和右旋圆偏振光并使其偏转到预定的角度,分束效率高达92%。同时,通过向悬链线凹槽注入酒精实现了工作频率从10.5 GHz到8.5 GHz的连续调谐。在可见光波段,Tang等人基于悬链线结构提出了一种全金属超表面,以此来实现高效和宽带的光聚焦功能[],如图3(b)所示。所设计的超透镜分别可以实现衍射受限和亚衍射极限聚焦,工作带宽几乎覆盖整个可见光谱,相较于二元相位超透镜,通过悬链线结构设计实现了更高的聚焦效率并更好地抑制了杂散光。

    Figure 3. All-metal catenary metasurfaces. (a) Circular polarized beam splitter[48]; (b) Focusing lens[49]
    Full-Size Img PowerPoint

    All-metal catenary metasurfaces. (a) Circular polarized beam splitter[]; (b) Focusing lens[]

    几何相位型超表面在各类平面光学器件中应用广泛[],该类超表面最大的优势在于其设计简单,并且产生的几何相移与波长无关,基于该原理研究人员设计出了一系列宽带的全金属超表面功能器件。2018年,研究人员通过控制亚波长金属光栅的取向角在红外波段实现了电磁波的高效散射,与此同时他们还制备了全息显示效率超过80%的反射式全息器件[]。如图2(a)所示,用于构建超表面的金属光栅单元在宽波段内表现出了超高的反射率和偏振转换效率。上述全金属超表面不仅工作效率高,而且加工简单。为节省成本,研究人员采用激光直写和传统光刻技术,通过在光刻胶或者硅、石英等基底上刻蚀出目标结构,然后镀一定厚度的金属层,得到超表面样品。尽管通过该方法制备的超表面并不是理想的全金属结构,但金属层的厚度远大于趋肤深度,可以实现与全金属结构相同的光学功能,因此可以将其视为全金属结构。随后,2019年他们采用金属砖作为单元结构,同样利用几何相位原理实现了宽带和高效的电磁波前操纵[]。如图2(b)所示,在圆偏振光入射的情况下,所设计的单元结构在9.5~11.5 μm的波长范围内,交叉偏振反射率达到94%。相较于MIM型结构,全金属结构呈现出更高的偏振转换效率和更大的带宽。进一步,通过控制金属单元的空间取向实现0-2π的相位调控,并实验验证了高效的光束偏转和全息显示功能。2020年,研究人员在此单元结构的基础上设计了一种由S型纳米砖组成的全金属超表面[],通过对比另外两种单元结构,发现S型金属结构具有更高的平均偏振转换效率及更大的工作带宽,如图2(c)所示。2021年,研究人员提出了广义几何相位理论,并指出利用全金属结构设计可以显著提高器件的效率[]。随后,Cai等人对此进行了实验验证,利用广义几何相位原理设计了高效率的全息器件。如图2(d)所示,相比于MIM结构和全介质结构,全金属结构展现出更高的效率和更大的带宽[]。在微波波段,Luo等人利用二重和三重旋转对称性的全金属结构,分别得到了两倍和六倍的旋转多普勒频移,证明了高阶几何相位可以放大旋转多普勒频移[]

    Figure 4. Multifunctional devices based on all-metal metasurfaces. (a, b) Simultaneous near-field grayscale display and three-dimensional holographic imaging enabled by complex amplitude modulation[70]; (c, d) Simultaneous full-color printing and holography enabled by all-metal metasurface[71]
    Full-Size Img PowerPoint

    Multifunctional devices based on all-metal metasurfaces. (a, b) Simultaneous near-field grayscale display and three-dimensional holographic imaging enabled by complex amplitude modulation[]; (c, d) Simultaneous full-color printing and holography enabled by all-metal metasurface[]

    Figure 2. Simulation results of different metal unit structures. (a) Simulation results of metal gratings[36]; (b) Simulation results of metal nanobricks and comparison with MIM-type structure [37];  (c) Simulation results of S-type unit structure [47]; (d) Simulation comparison of different C3 structures [50]
    Full-Size Img PowerPoint

    Simulation results of different metal unit structures. (a) Simulation results of metal gratings[]; (b) Simulation results of metal nanobricks and comparison with MIM-type structure []; (c) Simulation results of S-type unit structure []; (d) Simulation comparison of different C3 structures []

    2018年,研究人员提出一种由亚波长金属光栅组成的相位梯度超表面,通过调控电磁波散射,并结合金属材料在红外波段的低辐射特性,在8-14 μm波段同时实现了超低的镜面反射率和发射率[]。如图6(a)所示,在电磁波以不同角度入射时,实验加工的样品在10~14 μm波段的相应镜面反射率均低于0.1,并且从红外热像仪的测试结果中可以看到样品具有超低的热辐射,证明该结构有望应用于激光与热红外的兼容隐身。在此工作基础上,2019年他们结合漫反射原理,在微波波段设计了一种全金属超表面[],分别在6°、20°、30°三种入射角下测量器件的反射信号,证明了该结构在大入射角和宽频谱下的高效雷达散射截面(radar cross section,RCS)抑制能力。进一步,他们还验证了该超表面的耐高温和低热辐射特性,如图6(b)所示。值得一提的是,研究人员发现金属光栅间的电场分布满足悬链线函数,基于此建立了悬链线模型解释了电磁波与厚金属光栅相互作用的物理过程,推动了悬链线光学的进一步发展。

    2020年,基于全金属超表面,Feng等人提出了一种分层超材料以实现激光-热红外-微波的兼容隐身,如图7(a)所示[]。该结构由顶层的全金属超表面阵列和底层的微波吸收器组成。金属超表面能够将入射的1.06 μm激光散射到其他方向进而抑制其回波信号。同时,结构在3~5 μm和8~14 μm的红外大气窗口具有极低的发射率。超表面阵列间留有 μm级宽度的间隙,使得微波几乎能够全部透射进而被底层的吸波材料高效吸收。仿真结果表明,在入射角不超过40°时,TE和TM偏振光在7~12.7 GHz的频率范围内吸收效率均超过90%。进一步,他们于2022年又提出了一种大面积的跨尺度分层超材料[],同时实现了双波长激光、热红外以及微波的多频谱兼容隐身,所设计的器件可以通过纳米压印技术进行大面积低成本制造。如图7(b)所示,采用的结构设计与上述工作类似,也是由全金属超表面阵列和微波吸收器组成。其中超表面能够同时将1.06 μm和10.6 μm波长的激光散射到其他方向使得镜面反射率缩减至0.2,同时金属结构表面还可以保持不超过0.2的红外发射率。入射的微波通过金属超表面阵列后被下方的吸波材料吸收,实验结果表明在2.7-26 GHz的超宽带范围内吸收效率超过90%。考虑到隐身材料作为蒙皮时经常需要曲面贴合,Huang等人将金属反射层加工在PDMS衬底上,实现了一种柔性金属超表面[],如图7(c)所示。该结构基于相消干涉原理实现了1.06 μm和1.55 μm激光的高效吸收。与此同时,设计的棋盘型超表面结构可以调控10.6 μm激光散射从而降低其镜面反射率,最终同时实现三波长激光(1.06 μm、1.55 μm、10.6 μm)的低反射,实验测得的反射率分别为0.017、0.13、0.17。该金属结构在3~5 μm和8~14 μm波段依然保持低的热辐射特性,平均发射率分别为0.19和0.11。除此之外,该材料还表现出超疏水性等特点,为多频谱兼容隐身提供了有效手段。

    Figure 6. Laser-infrared and microwave-infrared stealth technology based on all-metal metasurface. (a) Measurement results of the laser-infrared compatible stealth materials[36]; (b) Equivalent circuit model of the thick metal grating and measured high-temperature RCS and infrared radiation of the microwave-infrared compatible stealth materials[46]
    Full-Size Img PowerPoint

    Laser-infrared and microwave-infrared stealth technology based on all-metal metasurface. (a) Measurement results of the laser-infrared compatible stealth materials[]; (b) Equivalent circuit model of the thick metal grating and measured high-temperature RCS and infrared radiation of the microwave-infrared compatible stealth materials[]

    Figure 7. Multispectral compatible stealth metamaterials based on all-metal metasurfaces. (a) Schematic diagram and simulation results of the hierarchical metamaterial for laser-infrared-microwave compatible stealth[83]; (b) Schematic diagram of the large-area and multiscale hierarchical metamaterials and experimental test results 84]; (c) Schematic diagram and experiment results of the flexible metallic metasurface for multi-wavelength lasers and infrared compatible stealth[85]
    Full-Size Img PowerPoint

    Multispectral compatible stealth metamaterials based on all-metal metasurfaces. (a) Schematic diagram and simulation results of the hierarchical metamaterial for laser-infrared-microwave compatible stealth[]; (b) Schematic diagram of the large-area and multiscale hierarchical metamaterials and experimental test results ]; (c) Schematic diagram and experiment results of the flexible metallic metasurface for multi-wavelength lasers and infrared compatible stealth[]

    电磁隐身,即利用材料对电磁波的吸收和反射特性,借助目标“大气窗口”的波长选择性来实现隐身或者伪装。近年来,基于超表面强大的电磁波调控能力,涌现出了一系列超薄隐身材料与器件[-]。传统的金属-介质混合超表面多工作于同一频谱,难以实现多谱段兼容[-],并且其结构难以在复杂的工程环境中实际应用。为了克服这一难题,研究人员基于全金属结构设计了多种超表面和超材料器件,实现了多频谱兼容的电磁伪装。

    尽管全金属超表面在近年来得到了广泛关注和长足的发展,但仍然面临着许多机遇与挑战。光波所携带的信息非常丰富,如振幅、相位以及偏振态等,进一步开发光学多参量调控,有望实现多维度信息复用;其次,金属材料普遍具有优良的热学、力学、电学等性能,如何充分发挥全金属结构的优势并探索其在多物理场调控中的应用还有待进一步研究;最后,目前全金属超表面同样面临无法动态调控的问题,在未来实现更多更复杂功能的同时,发展动态可调谐的手段将能够丰富其应用场景。

    近年来,国内外学者在基于全金属超表面的电磁波相位调控技术方面开展了广泛和深入的研究,设计并制备了一系列新型功能器件与材料。综合来看,全金属超表面表现出了加工简单、机械性能好等优势,并且具有高效率、宽带等特点,有望为实现下一代集成化、平面化光学器件及多频谱兼容的电磁隐身材料提供方案。

    所有作者声明无利益冲突

  • References

    [1]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337.

    DOI: 10.1126/science.1210713

    CrossRef Google Scholar

    [2]

    Tang D L, Chen L, Liu J, et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 2020, 28(8): 12209−12218.

    DOI: 10.1364/OE.392197

    CrossRef Google Scholar

    [3]

    侯海生, 王光明, 李海鹏, 等. 超薄宽带平面聚焦超表面及其在高增益天线中的应用[J]. 物理学报, 2016, 65(2): 027701.

    DOI: 10.7498/aps.65.027701

    Hou H S, Wang G M, Li H P, et al. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna[J]. Acta Phys Sin, 2016, 65(2): 027701.

    DOI: 10.7498/aps.65.027701

    CrossRef Google Scholar

    [4]

    Lei Y S, Zhang Q, Guo Y H, et al. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser[J]. Photonics Res, 2023, 11(3): B111−B124.

    DOI: 10.1364/PRJ.476317

    CrossRef Google Scholar

    [5]

    Luo X G, Pu M B, Li X, et al. Broadband spin hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276.

    DOI: 10.1038/lsa.2016.276

    CrossRef Google Scholar

    [6]

    Burch J, Di Falco A. Surface topology specific metasurface holograms[J]. ACS Photonics, 2018, 5(5): 1762−1766.

    DOI: 10.1021/acsphotonics.7b01449

    CrossRef Google Scholar

    View full references list
  • Cited by

    Periodical cited type(5)

    1. 许丽佳,王青松,付小芳,张其,何琼,赵泽宇,罗先刚. 基于矢量光场的光学加工技术(特邀). 中国激光. 2024(12): 199-213 .
    2. 梁茂伟,卢德宙,马耀光. 超表面的矢量光场调控. 光电工程. 2024(08): 8-31 . 本站查看
    3. 龚攀,杜安斌,张飞,蒲明博,唐拓疆,李兰婷,罗先刚. 用于超构表面衍射光帆光力测量的扭秤设计. 光电工程. 2024(08): 156-165 . 本站查看
    4. 王皓萱,何彦霖,祝航威,董杭,王书凝. 超表面偏振器件研究进展与展望. 光电工程. 2024(08): 121-145 . 本站查看
    5. 赵颂,刘昱轩,张恒,赵亚丽,李旭峰. 基于超材料的光学太阳反射镜的研究. 光电工程. 2024(11): 28-37 . 本站查看

    Other cited types(1)

  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2023.230119
    Cite this Article
    Liu Bo, Xie Xin, Gan Xuetao, Zhao Jianlin. Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves. Opto-Electronic Engineering 50, 230119 (2023). DOI: 10.12086/oee.2023.230119
    Download Citation
    Article History
    • Received Date May 19, 2023
    • Revised Date August 27, 2023
    • Accepted Date August 27, 2023
    • Published Date November 02, 2023
    Article Metrics
    Article Views(6751) PDF Downloads(1120)
    Share:
  • Related Articles

[1]

Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337.

DOI: 10.1126/science.1210713

CrossRef Google Scholar

[2]

Tang D L, Chen L, Liu J, et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 2020, 28(8): 12209−12218.

DOI: 10.1364/OE.392197

CrossRef Google Scholar

[3]

侯海生, 王光明, 李海鹏, 等. 超薄宽带平面聚焦超表面及其在高增益天线中的应用[J]. 物理学报, 2016, 65(2): 027701.

DOI: 10.7498/aps.65.027701

Hou H S, Wang G M, Li H P, et al. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna[J]. Acta Phys Sin, 2016, 65(2): 027701.

DOI: 10.7498/aps.65.027701

CrossRef Google Scholar

[4]

Lei Y S, Zhang Q, Guo Y H, et al. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser[J]. Photonics Res, 2023, 11(3): B111−B124.

DOI: 10.1364/PRJ.476317

CrossRef Google Scholar

[5]

Luo X G, Pu M B, Li X, et al. Broadband spin hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276.

DOI: 10.1038/lsa.2016.276

CrossRef Google Scholar

[6]

Burch J, Di Falco A. Surface topology specific metasurface holograms[J]. ACS Photonics, 2018, 5(5): 1762−1766.

DOI: 10.1021/acsphotonics.7b01449

CrossRef Google Scholar

[7]

Zhang C M, Dong F L, Intaravanne Y, et al. Multichannel metasurfaces for anticounterfeiting[J]. Phys Rev Appl, 2019, 12(3): 034028.

DOI: 10.1103/PhysRevApplied.12.034028

CrossRef Google Scholar

[8]

Zhang X H, Li X, Jin J J, et al. Polarization-independent broadband meta-holograms: via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304−9310.

DOI: 10.1039/C7NR08428E

CrossRef Google Scholar

[9]

Chen D B, Yang J B, He X, et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 2023, 11(14): 2300182.

DOI: 10.1002/adom.202300182

CrossRef Google Scholar

[10]

Liang Y, Dong Y Y, Jin Y X, et al. Terahertz vortex beams generated by the ring-arranged multilayer transmissive metasurfaces[J]. Infrared Phys Technol, 2022, 127: 104441.

DOI: 10.1016/j.infrared.2022.104441

CrossRef Google Scholar

[11]

Akram M R, Bai X D, Jin R H, et al. Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves[J]. IEEE Trans Antennas Propag, 2019, 67(7): 4650−4658.

DOI: 10.1109/TAP.2019.2905777

CrossRef Google Scholar

[12]

Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Adv Opt Mater, 2019, 7: 1900503.

DOI: 10.1002/adom.201900503

CrossRef Google Scholar

[13]

Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Phys Rev Lett, 2013, 110(20): 203903.

DOI: 10.1103/PhysRevLett.110.203903

CrossRef Google Scholar

[14]

Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2016, 2(1): e1501168.

DOI: 10.1126/sciadv.1501168

CrossRef Google Scholar

[15]

Akram M R, Mehmood M Q, Bai X D, et al. High efficiency ultrathin transmissive metasurfaces[J]. Adv Opt Mater, 2019, 7(11): 1801628.

DOI: 10.1002/adom.201801628

CrossRef Google Scholar

[16]

Jing X F, Gui X C, Zhou P W, et al. Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter[J]. J Light Technol, 2018, 36(12): 2322−2327.

DOI: 10.1109/JLT.2018.2808339

CrossRef Google Scholar

[17]

Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Trans Microwave Theory Tech, 2013, 61(12): 4407−4417.

DOI: 10.1109/TMTT.2013.2287173

CrossRef Google Scholar

[18]

Bouchard F, De Leon I, Schulz S A, et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges[J]. Appl Phys Lett, 2014, 105(10): 101905.

DOI: 10.1063/1.4895620

CrossRef Google Scholar

[19]

Chen M L N, Jiang L J, Sha W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Appl Sci, 2018, 8(3): 362.

DOI: 10.3390/app8030362

CrossRef Google Scholar

[20]

Yao B S, Zang X F, Li Z, et al. Dual-layered metasurfaces for asymmetric focusing[J]. Photonics Res, 2020, 8(6): 830−843.

DOI: 10.1364/PRJ.387672

CrossRef Google Scholar

[21]

Xue C H, Lou Q, Chen Z N. Broadband double-layered Huygens’ Metasurface lens antenna for 5G millimeter-wave systems[J]. IEEE Trans Antennas Propag, 2020, 68(3): 1468−1476.

DOI: 10.1109/TAP.2019.2943440

CrossRef Google Scholar

[22]

Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302.

DOI: 10.1126/science.1253213

CrossRef Google Scholar

[23]

Fang C Z, Yang Q Y, Yuan Q C, et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 2021, 4(6): 200030.

DOI: 10.29026/oea.2021.200030

CrossRef Google Scholar

[24]

Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014.

DOI: 10.29026/oes.2022.210014

CrossRef Google Scholar

[25]

Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062.

DOI: 10.29026/oea.2022.210062

CrossRef Google Scholar

[26]

Liu Z Q, Tan W Y, Fu G L, et al. Multipolar silicon-based resonant meta-surface for electro-optical modulation and sensing[J]. Opt Lett, 2023, 48(11): 2969−2972.

DOI: 10.1364/OL.489627

CrossRef Google Scholar

[27]

Zhu L, Dong L, Guo J, et al. Polarization conversion based on Mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface[J]. Plasmonics, 2018, 13(6): 1971−1976.

DOI: 10.1007/s11468-018-0712-8

CrossRef Google Scholar

[28]

Chen M, Cai J J, Sun W, et al. High-efficiency all-dielectric metasurfaces for broadband polarization conversion[J]. Plasmonics, 2018, 13(1): 21−29.

DOI: 10.1007/s11468-016-0479-8

CrossRef Google Scholar

[29]

Chen J, Wang D P, Si G Y, et al. Planar peristrophic multiplexing metasurfaces[J]. Opto-Electron Adv, 2023, 6: 220141.

DOI: 10.29026/oea.2023.220141

CrossRef Google Scholar

[30]

Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312.

DOI: 10.1038/nnano.2015.2

CrossRef Google Scholar

[31]

Jiang S, Chen C, Zhang H L, et al. Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)[J]. Opt Express, 2018, 26(5): 6466−6477.

DOI: 10.1364/OE.26.006466

CrossRef Google Scholar

[32]

李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束[J]. 物理学报, 2019, 68(23): 238101.

DOI: 10.7498/aps.68.20191055

Li X N, Zhou L, Zhao G Z. Terahertz vortex beam generation based on reflective metasurface[J]. Acta Phys Sin, 2019, 68(23): 238101.

DOI: 10.7498/aps.68.20191055

CrossRef Google Scholar

[33]

孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置[J]. 物理学报, 2021, 70(19): 198401.

DOI: 10.7498/aps.70.20210681

Sun S, Yang L J, Sha W. Offset-fed vortex wave generator based on reflective metasurface[J]. Acta Phys Sin, 2021, 70(19): 198401.

DOI: 10.7498/aps.70.20210681

CrossRef Google Scholar

[34]

Ye W M, Li X, Liu J, et al. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces[J]. Opt Express, 2016, 24(22): 25805−25815.

DOI: 10.1364/OE.24.025805

CrossRef Google Scholar

[35]

Gong Z J, Wu C, Fang C Q, et al. Broadband efficient vortex beam generation with metallic helix array[J]. Appl Phys Lett, 2018, 113(7): 071104.

DOI: 10.1063/1.5039804

CrossRef Google Scholar

[36]

Xie X, Li X, Pu M B, et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion[J]. Adv Funct Mater, 2018, 28(14): 1706673.

DOI: 10.1002/adfm.201706673

CrossRef Google Scholar

[37]

Xie X, Liu K P, Pu M B, et al. All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation[J]. Nanophotonics, 2020, 9(10): 3209−3215.

DOI: 10.1515/nanoph-2019-0415

CrossRef Google Scholar

[38]

Liu Z Q, Liu G Q, Fu G L, et al. All-metal meta-surfaces for narrowband light absorption and high performance sensing[J]. J Phys D Appl Phys, 2016, 49(44): 445104.

DOI: 10.1088/0022-3727/49/44/445104

CrossRef Google Scholar

[39]

Hulkkonen H, Sah A, Niemi T. All-metal broadband optical absorbers based on block copolymer nanolithography[J]. ACS Appl Mater Interfaces, 2018, 10(49): 42941−42947.

DOI: 10.1021/acsami.8b17294

CrossRef Google Scholar

[40]

Mattiucci N, Trimm R, D'Aguanno G, et al. Tunable, narrow-band, all-metallic microwave absorber[J]. Appl Phys Lett, 2012, 101(14): 141115.

DOI: 10.1063/1.4757282

CrossRef Google Scholar

[41]

Li Z Y, Butun S, Aydin K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces[J]. ACS Nano, 2014, 8(8): 8242−8248.

DOI: 10.1021/nn502617t

CrossRef Google Scholar

[42]

Liu Z Q, Liu G Q, Liu X S, et al. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity[J]. Nanotechnology, 2015, 26(23): 235702.

DOI: 10.1088/0957-4484/26/23/235702

CrossRef Google Scholar

[43]

Zhang K, Deng R X, Song L X, et al. Broadband near-infrared absorber based on all metallic metasurface[J]. Materials, 2019, 12(21): 3568.

DOI: 10.3390/ma12213568

CrossRef Google Scholar

[44]

Liu Y M, Zhang X. Metasurfaces for manipulating surface plasmons[J]. Appl Phys Lett, 2013, 103(14): 141101.

DOI: 10.1063/1.4821444

CrossRef Google Scholar

[45]

刘梦蛟, 李添悦, 戈钦, 等. 多功能超构表面的相位调控机制及研究进展[J]. 光学学报, 2022, 42(21): 2126004.

DOI: 10.3788/AOS202242.2126004

Liu M J, Li T Y, Ge Q, et al. Phase modulation mechanism and research progress of multifunctional metasurfaces[J]. Acta Opt Sin, 2022, 42(21): 2126004.

DOI: 10.3788/AOS202242.2126004

CrossRef Google Scholar

[46]

Xie X, Pu M B, Huang Y J, et al. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field[J]. Adv Mater Technol, 2019, 4(2): 1800612.

DOI: 10.1002/admt.201800612

CrossRef Google Scholar

[47]

Cai J X, Zhang F, Pu M B, et al. Broadband and high-efficiency photonic spin-Hall effect with all-metallic metasurfaces[J]. Opt Express, 2022, 30(9): 14938−14947.

DOI: 10.1364/OE.455381

CrossRef Google Scholar

[48]

Xie X, Pu M B, Liu K P, et al. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror[J]. Adv Mater Technol, 2019, 4(7): 1900334.

DOI: 10.1002/admt.201900334

CrossRef Google Scholar

[49]

Chen L, Shao Z L, Liu J, et al. Reflective quasi-continuous metasurface with continuous phase control for light focusing[J]. Materials, 2021, 14(9): 2147.

DOI: 10.3390/ma14092147

CrossRef Google Scholar

[50]

Cai J X, Zhang F, Pu M B, et al. All-metallic high-efficiency generalized pancharatnam–berry phase metasurface with chiral meta-atoms[J]. Nanophotonics, 2022, 11(9): 1961−1968.

DOI: 10.1515/nanoph-2021-0811

CrossRef Google Scholar

[51]

Luo J, Wang Y H, Pu M B, et al. Multiple rotational doppler effect induced by a single spinning meta-atom[J]. Phys Rev Appl, 2023, 19(4): 044064.

DOI: 10.1103/PhysRevApplied.19.044064

CrossRef Google Scholar

[52]

Luo X G. Catenary Optics[M]. Singapore: Springer, 2019. https://doi.org/10.1007/978-981-13-4818-1.

Google Scholar

[53]

Pu M B, Ma X L, Guo Y H, et al. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion[J]. Opt Express, 2018, 26(15): 19555−19562.

DOI: 10.1364/OE.26.019555

CrossRef Google Scholar

[54]

李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275.

DOI: 10.3969/j.issn.1003-501X.2017.03.001

Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275.

DOI: 10.3969/j.issn.1003-501X.2017.03.001

CrossRef Google Scholar

[55]

Xie X, Pu M B, Jin J J, et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902.

DOI: 10.1103/PhysRevLett.126.183902

CrossRef Google Scholar

[56]

Guo Y H, Pu M B, Zhang F, et al. Classical and generalized geometric phase in electromagnetic metasurfaces[J]. Photonics Insights, 2022, 1(1): R03.

DOI: 10.3788/PI.2022.R03

CrossRef Google Scholar

[57]

Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396.

DOI: 10.1126/sciadv.1500396

CrossRef Google Scholar

[58]

Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin– orbit interactions based on phase change materials[J]. Adv Sci, 2018, 5(10): 1800835.

DOI: 10.1002/advs.201800835

CrossRef Google Scholar

[59]

Guo Y H, Ma X L, Pu M B, et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Adv Opt Mater, 2018, 6(19): 1800592.

DOI: 10.1002/adom.201800592

CrossRef Google Scholar

[60]

Guo Y H, Zhang Z J, Pu M B, et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging[J]. iScience, 2019, 21: 145−156.

DOI: 10.1016/j.isci.2019.10.019

CrossRef Google Scholar

[61]

Zhao L, Liu H, He Z H, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Appl Opt, 2018, 57(8): 1757−1764.

DOI: 10.1364/AO.57.001757

CrossRef Google Scholar

[62]

Song M W, Li X, Pu M B, et al. Color display and encryption with a plasmonic polarizing metamirror[J]. Nanophotonics, 2018, 7(1): 323−331.

DOI: 10.1515/nanoph-2017-0062

CrossRef Google Scholar

[63]

Zhou X T, Jin R C, Wang J, et al. All-metal metasurface polarization converter in visible region with an in-band function[J]. Appl Phys Express, 2019, 12(9): 092010.

DOI: 10.7567/1882-0786/ab3c0c

CrossRef Google Scholar

[64]

Yan J C, Li Z K, Zhang Y, et al. Trapped-mode resonances in all-metallic metasurfaces comprising rectangular-hole dimers with broken symmetry[J]. J Appl Phys, 2019, 126(21): 213102.

DOI: 10.1063/1.5128520

CrossRef Google Scholar

[65]

Wu P H, Wang Y Y, Yi Z, et al. A near-infrared multi-band perfect absorber based on 1D gold grating fabry-perot structure[J]. IEEE Access, 2020, 8: 72742−72748.

DOI: 10.1109/ACCESS.2020.2983394

CrossRef Google Scholar

[66]

Majumder B, Sankar V S, Meena H. Design of an artificially engineered all metallic lens antenna[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020: 1072–1074. https://doi.org/10.1109/APMC47863.2020.9331698.

https://doi.org/10.1109/APMC47863.2020.9331698.

" target="_blank">Google Scholar

[67]

Li L X, Zong X Y, Liu Y F. All-metallic metasurfaces towards high-performance magneto-plasmonic sensing devices[J]. Photonics Res, 2020, 8(11): 1742−1748.

DOI: 10.1364/PRJ.399926

CrossRef Google Scholar

[68]

Shi Y Y, Yang R, Dai C J, et al. Broadband diffraction-free on-chip propagation along hybrid metallic grating metasurfaces in the visible frequency[J]. J Phys D Appl Phys, 2021, 54(4): 044001.

DOI: 10.1088/1361-6463/abbfc6

CrossRef Google Scholar

[69]

Xiong X, Wang X, Wang Z H, et al. Constructing an achromatic polarization-dependent bifocal metalens with height-gradient metastructures[J]. Opt Lett, 2021, 46(6): 1193−1196.

DOI: 10.1364/OL.414668

CrossRef Google Scholar

[70]

Du W J, Lou Z L, Chen X S, et al. Multifunctional metasurfaces integrating near-field display and 3D holography[J]. J Phys D Appl Phys, 2022, 55(10): 105102.

DOI: 10.1088/1361-6463/ac3b11

CrossRef Google Scholar

[71]

Zhang F, Pu M B, Gao P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Adv Sci, 2020, 7(10): 1903156.

DOI: 10.1002/advs.201903156

CrossRef Google Scholar

[72]

Cheng Y Z, Yang D R, Li X C. Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region[J]. Phys B Condens Matter, 2022, 640: 414047.

DOI: 10.1016/J.PHYSB.2022.414047

CrossRef Google Scholar

[73]

Wang M C, Cheng Y Z, Wu L. Ultra-broadband high-efficiency circular polarization conversion and terahertz wavefront manipulation based on an all-metallic reflective metasurface[J]. Appl Opt, 2022, 61(16): 4833−4842.

DOI: 10.1364/AO.454099

CrossRef Google Scholar

[74]

Zhu J F, Liao S W, Xue Q. 3-D printed millimeter-wave metal-only dual-band circularly polarized reflectarray[J]. IEEE Trans Antennas Propag, 2022, 70(10): 9357−9364.

DOI: 10.1109/TAP.2022.3184483

CrossRef Google Scholar

[75]

Bai G D, Ma Q, Cao W K, et al. Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurfaces[J]. Adv Intell Syst, 2019, 1(5): 1900038.

DOI: 10.1002/aisy.201900038

CrossRef Google Scholar

[76]

褚宏晨, 赖耘. 基于超表面的超薄隐身器件[J]. 红外与激光工程, 2020, 49(9): 20201038.

DOI: 10.3788/IRLA20201038

Chu H C, Lai Y. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared Laser Eng, 2020, 49(9): 20201038.

DOI: 10.3788/IRLA20201038

CrossRef Google Scholar

[77]

Ji C, Peng J Q, Yuan L M, et al. All-ceramic coding metastructure for high-temperature RCS reduction[J]. Adv Eng Mater, 2022, 24(8): 2101503.

DOI: 10.1002/adem.202101503

CrossRef Google Scholar

[78]

Li Z G, Wang W, Rosenmann D, et al. All-metal structural color printing based on aluminum plasmonic metasurfaces[J]. Opt Express, 2016, 24(18): 20472−20480.

DOI: 10.1364/OE.24.020472

CrossRef Google Scholar

[79]

徐翠莲, 孟跃宇, 王甲富, 等. 光学透明红外与雷达兼容隐身复合超表面[J]. 光子学报, 2021, 50(4): 0416001.

DOI: 10.3788/gzxb20215004.0416001

Xu C L, Meng Y Y, Wang J F, et al. Optically transparent hybrid metasurfaces for low infrared emission and wideband microwave absorption[J]. Acta Photonica Sin, 2021, 50(4): 0416001.

DOI: 10.3788/gzxb20215004.0416001

CrossRef Google Scholar

[80]

Yang K, Shi S Q, Li C X, et al. Broadband stealth devices based on encoded metamaterials[J]. Appl Opt, 2022, 61(34): 10171−10177.

DOI: 10.1364/AO.471262

CrossRef Google Scholar

[81]

Huang S N, Fan Q, Xu C L, et al. A visible-light-transparent camouflage-compatible flexible metasurface for infrared-radar stealth applications[J]. J Phys D Appl Phys, 2021, 54(1): 015001.

DOI: 10.1088/1361-6463/abb728

CrossRef Google Scholar

[82]

Buhara E, Ghobadi A, Ozbay E. Adaptive visible and short-wave infrared camouflage using a dynamically tunable metasurface[J]. Opt Lett, 2021, 46(19): 4777−4780.

DOI: 10.1364/OL.439435

CrossRef Google Scholar

[83]

Feng X D, Xie X, Pu M B, et al. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage[J]. Opt Express, 2020, 28(7): 9445−9453.

DOI: 10.1364/OE.388335

CrossRef Google Scholar

[84]

Feng X D, Pu M B, Zhang F, et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave[J]. Adv Funct Mater, 2022, 32(36): 2205547.

DOI: 10.1002/adfm.202205547

CrossRef Google Scholar

[85]

Huang J K, Wang Y T, Yuan L M, et al. Large-area and flexible plasmonic metasurface for laser–infrared compatible camouflage[J]. Laser Photonics Rev, 2023, 17(3): 2200616.

DOI: 10.1002/LPOR.202200616

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Zhao Jianlin

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Applications and progress of all-metal metasurfaces in phase manipulation of electromagnetic waves
    • Figure  1

      Schematic diagram of the typical geometric phase-type building blocks and all-metal metasurfaces. The first and second quadrants show the metallic nanobrick and grating unit structures and the designed electromagnetic stealth devices[36, 46], holographic display device[37], and vortex beam generator[47]; the third quadrant shows a catenary metal unit structure and the designed circularly polarized beam splitter[48], optical wave focusing device[49]; the fourth quadrant shows the unit structure with multi-fold rotational symmetry and the designed wavefront modulation device[50] and rotational Doppler effect detector[51]

    • Figure  2

      Simulation results of different metal unit structures. (a) Simulation results of metal gratings[36]; (b) Simulation results of metal nanobricks and comparison with MIM-type structure [37]; (c) Simulation results of S-type unit structure [47]; (d) Simulation comparison of different C3 structures [50]

    • Figure  3

      All-metal catenary metasurfaces. (a) Circular polarized beam splitter[48]; (b) Focusing lens[49]

    • Figure  4

      Multifunctional devices based on all-metal metasurfaces. (a, b) Simultaneous near-field grayscale display and three-dimensional holographic imaging enabled by complex amplitude modulation[70]; (c, d) Simultaneous full-color printing and holography enabled by all-metal metasurface[71]

    • Figure  5

      All-metal metasurfaces based on split-ring resonators. (a) Schematic diagram of the terahertz metasurface[73]; (b-d) Simulation results of the terahertz metasurface, including anomalous reflection, focusing, vortex beam generation[74]; (e) All-metal metasurface for simultaneous manipulation of electromagnetic waves and acoustic waves[75]; (f-h) Calculations results of multiple-beam generation, scattering diffusion, and beam steering for both electromagnetic waves and acoustic waves[75]

    • Figure  6

      Laser-infrared and microwave-infrared stealth technology based on all-metal metasurface. (a) Measurement results of the laser-infrared compatible stealth materials[36]; (b) Equivalent circuit model of the thick metal grating and measured high-temperature RCS and infrared radiation of the microwave-infrared compatible stealth materials[46]

    • Figure  7

      Multispectral compatible stealth metamaterials based on all-metal metasurfaces. (a) Schematic diagram and simulation results of the hierarchical metamaterial for laser-infrared-microwave compatible stealth[83]; (b) Schematic diagram of the large-area and multiscale hierarchical metamaterials and experimental test results 84]; (c) Schematic diagram and experiment results of the flexible metallic metasurface for multi-wavelength lasers and infrared compatible stealth[85]

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7