New website getting online, testing
Optical system design of wedge beam splitter splitting mid-wave infrared Fizeau interferometer
  • Abstract

    To solve the problem of beam splitting limitation of cemented cubic beam splitters in the mid-wave infrared band, the optical design scheme of mid-wave infrared Fizeau interferometers based on wedge splitting is proposed. At the working wavelength of 3.39 μm, to reduce the return error of the interference system and improve the measurement accuracy, a two-reflection folding collimating optical path structure is adopted, which not only ensures a good collimating wavefront, but also optimizes the design of the optical wedge to take into account the wavefront quality of the interference imaging. ZnSe and CaF2 materials are used, the collimator of the interferometer is a single plano-convex aspheric structure, and the imaging lens is composed of two separate spherical mirrors. Through the Montecarlo simulation tolerance analysis, the collimator wavefront PV of the collimator within 0.1° field of view is better than λ/4. The normalized field of view imaging wavefront PV of the interferometric optical path is better than λ/5; The interferometric system return error is smaller than λ/50 at 0° field of view placed on the standard surface and the surface under test is tilted within 0.05°.

    Keywords

  • loading
  • References

    [1]

    Lamare M. Interferometer for testing infrared materials and optical systems[J]. Proc SPIE, 1978, 136: 43−51.

    DOI: 10.1117/12.956137

    CrossRef Google Scholar

    [2]

    王之昊, 张文喜, 伍洲, 等. 激光测振仪中最小均方误差前向预测器的研究[J]. 光电工程, 2022, 49(5): 210391.

    DOI: 10.12086/oee.2022.210391

    Wang Z H, Zhang W X, Wu Z, et al. Research on the forward predictor of minimum mean square error in laser vibrometer[J]. Opto-Electron Eng, 2022, 49(5): 210391.

    DOI: 10.12086/oee.2022.210391

    CrossRef Google Scholar

    [3]

    Malacara D. Optical Shop Testing[M]. 3rd ed. Hoboken: Wiley-Interscience, 2007: 17–19.

    Google Scholar

    [4]

    Furuya A. Design of infrared interferometer[J]. Proc SPIE, 1990, 1320: 478−482.

    DOI: 10.1117/12.22355

    CrossRef Google Scholar

    [5]

    陈进榜, 陈磊, 王青, 等. 大孔径移相式CO2激光干涉仪[J]. 中国激光, 1998, 25(1): 31−36.

    DOI: 10.3321/j.issn:0258-7025.1998.01.008

    Chen J B, Chen L, Wang Q, et al. A large aperture phase-shifting CO2 laser interferometer[J]. Chin J Lasers, 1998, 25(1): 31−36.

    DOI: 10.3321/j.issn:0258-7025.1998.01.008

    CrossRef Google Scholar

    [6]

    Wu Y Q, Zhang Y D, Wu F, et al. Far-infrared Fizeau interferometer for large aspheric mirror[J]. Proc SPIE, 2008, 7064: 70640S.

    DOI: 10.1117/12.794415

    CrossRef Google Scholar

    View full references list
  • Author Information

    • Yang Shuai, yangshuai20@mails.ucas.ac.cn On this SiteOn Google Scholar
      • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
      • School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
    • Corresponding author: Li Yang, liyang@aoe.ac.cn On this SiteOn Google Scholar
      • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
      • School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
    • Zhang Wenxi On this SiteOn Google Scholar
      • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
      • School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
    • Wu Zhou, wz@aircas.ac.cn On this SiteOn Google Scholar
      • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
      • School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
    • Qin Rikang On this SiteOn Google Scholar
      • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    • Fan Yaoxuan On this SiteOn Google Scholar
      • Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
      • School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2023.230014
    Cite this Article
    Yang Shuai, Li Yang, Zhang Wenxi, Wu Zhou, Qin Rikang, Fan Yaoxuan. Optical system design of wedge beam splitter splitting mid-wave infrared Fizeau interferometer. Opto-Electronic Engineering 50, 230014 (2023). DOI: 10.12086/oee.2023.230014
    Download Citation
    Article History
    • Received Date January 15, 2023
    • Revised Date March 20, 2023
    • Accepted Date March 20, 2023
    • Available Online June 01, 2023
    • Published Date June 08, 2023
    Article Metrics
    Article Views(7406) PDF Downloads(1257)
    Share:
  • Related Articles

  • Plate beam splitterWedge beam splitter
    Z50.00000.0000
    Z60.0702−0.0004
    Z70.01170.0048
    Z80.00000.0000
    Z9−0.00050.0009
    Z100.00000.0000
    View in article Downloads
  • Wavelength/μmF#Focal length/mm
    Collimator3.395762
    Imaging lens3.395.8235
    View in article Downloads
  • CommentSurf. typeRadiusThicknessMaterialSemi-diameterConicTilt about X
    OBJStandardInfinityInfinity-Infinity--
    1CollimatorEven asphere1091.61526.000ZnSe78.000−1.862-
    2StandardInfinity580.000-78.000--
    3Wedge beam splitterCoordinate break-0.000-0.000-−17.500
    4StandardInfinity5.000CaF225.400--
    5Coordinate break-0.000-0.000-−0.200
    6StandardInfinity0.000-25.400--
    7Coordinate break-0.000-0.000-0.200 (P)
    8Coordinate break-166.347-0.000-17.500(P)
    STOStandardInfinity26.960-3.000--
    10Imaging lensStandard37.2746.000ZnSe9.000--
    11Standard30.0005.000-9.000--
    12Standard164.9845.000ZnSe9.000--
    13Standard−52.37933.554-9.000--
    IMAStandardInfinity--3.503--
    View in article Downloads
  • Tolerance typesTolerance data
    Radius/%0.1
    Surface irregularity(RMS)/λ(λ=0.6328 μm)λ/40
    Conic±0.01
    Thickness/mm±0.05
    Surface tilt/(°)±0.05
    Surface dec/mm±0.05
    Element tilt/(°)±0.05
    Element dec/mm±0.05
    View in article Downloads
[1]

Lamare M. Interferometer for testing infrared materials and optical systems[J]. Proc SPIE, 1978, 136: 43−51.

DOI: 10.1117/12.956137

CrossRef Google Scholar

[2]

王之昊, 张文喜, 伍洲, 等. 激光测振仪中最小均方误差前向预测器的研究[J]. 光电工程, 2022, 49(5): 210391.

DOI: 10.12086/oee.2022.210391

Wang Z H, Zhang W X, Wu Z, et al. Research on the forward predictor of minimum mean square error in laser vibrometer[J]. Opto-Electron Eng, 2022, 49(5): 210391.

DOI: 10.12086/oee.2022.210391

CrossRef Google Scholar

[3]

Malacara D. Optical Shop Testing[M]. 3rd ed. Hoboken: Wiley-Interscience, 2007: 17–19.

Google Scholar

[4]

Furuya A. Design of infrared interferometer[J]. Proc SPIE, 1990, 1320: 478−482.

DOI: 10.1117/12.22355

CrossRef Google Scholar

[5]

陈进榜, 陈磊, 王青, 等. 大孔径移相式CO2激光干涉仪[J]. 中国激光, 1998, 25(1): 31−36.

DOI: 10.3321/j.issn:0258-7025.1998.01.008

Chen J B, Chen L, Wang Q, et al. A large aperture phase-shifting CO2 laser interferometer[J]. Chin J Lasers, 1998, 25(1): 31−36.

DOI: 10.3321/j.issn:0258-7025.1998.01.008

CrossRef Google Scholar

[6]

Wu Y Q, Zhang Y D, Wu F, et al. Far-infrared Fizeau interferometer for large aspheric mirror[J]. Proc SPIE, 2008, 7064: 70640S.

DOI: 10.1117/12.794415

CrossRef Google Scholar

[7]

Yoder P, Vukobratovich D. Opto-Mechanical Systems Design[M]. 4th ed. Boca Raton: CRC Press, 2015: 131–132.

Google Scholar

[8]

王生钊. 光学薄膜及其技术应用研究[M]. 北京: 中国水利水电出版社, 2020.

Wang S Z. Optical Thin Film and Its Technical Application Research[M]. Beijing: China Water Resources and Hydropower Press, 2020.

Google Scholar

[9]

阙立志. 3~13μm宽带红外分束镜研究[J]. 红外技术, 2011, 33(12): 695−698.

DOI: 10.3969/j.issn.1001-8891.2011.12.004

Que L Z. Study of a 3 μm to 13 μm wideband infrared beamsplitter[J]. Infrared Technol, 2011, 33(12): 695−698.

DOI: 10.3969/j.issn.1001-8891.2011.12.004

CrossRef Google Scholar

[10]

Polavarapu P L, Chen G C, Weibel S. Development, justification, and applications of a mid-infrared polarization-division interferometer[J]. Appl Spectrosc, 1994, 48(10): 1224−1235.

DOI: 10.1366/0003702944027381

CrossRef Google Scholar

[11]

朱波. 移相式斐索中波红外干涉仪关键技术及应用研究[D]. 南京: 南京理工大学, 2014.

Zhu B. Key technologies and applications of phase-shifted Fesol mid-wave infrared interferometer[D]. Nanjing: Nanjing University of Science and Technology, 2014.

Google Scholar

[12]

Selberg L A. Interferometer accuracy and precision[J]. Proc SPIE, 1991, 1400: 24−32.

DOI: 10.1117/12.26110

CrossRef Google Scholar

[13]

刘满林, 杨旺, 许伟才. 干涉仪成像畸变引起测量误差的校正方法[J]. 光学 精密工程, 2011, 19(10): 2349−2354.

DOI: 10.3788/OPE.20111910.2349

Liu M L, Yang W, Xu W C. Calibration of measuring error caused by interferometric imaging distortion[J]. Opt Precis Eng, 2011, 19(10): 2349−2354.

DOI: 10.3788/OPE.20111910.2349

CrossRef Google Scholar

[14]

李景镇. 光学手册[M]. 西安: 陕西科学技术出版社, 1986: 865–867.

Li J Z. Optical Manual[M]. Xi’an: Shaanxi Science and Technology Press, 1986: 865–867.

Google Scholar

[15]

李金鹏, 王鑫蕊, 杨永兴, 等. 一种用于可见-红外光同步成像系统的楔板型分束镜: CN213182178U[P]. 2021-05-11.

Li J P, Wang X R, Yang Y X, et al. A wedge plate type beam splitter for visible-infrared simultaneous imaging system: CN213182178U[P]. 2021-05-11.

Google Scholar

[16]

Howard J W. Formulas for the coma and astigmatism of wedge prisms used in converging light[J]. Appl Opt, 1985, 24(23): 4265−4268.

DOI: 10.1364/AO.24.004265

CrossRef Google Scholar

[17]

蔡志华. 基于单光楔补偿拼接检测大口径凸非球面反射镜技术的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021. https://doi.org/10.27522/d.cnki.gkcgs.2021.000075.

Cai Z H. Research on the technology of testing large convex aspherical mirror by single wedge compensation stitching method[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. https://doi.org/10.27522/d.cnki.gkcgs.2021.000075.

https://doi.org/10.27522/d.cnki.gkcgs.2021.000075.

" target="_blank">Google Scholar

Related Articles
Show full outline

Catalog

    Fan Yaoxuan

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Optical system design of wedge beam splitter splitting mid-wave infrared Fizeau interferometer
    • Figure  1

      Schematic design of the wedge splitting mediumwave infrared Fizeau interferometer

    • Figure  2

      Return error of the interference system. (a) Return error diagram of the reflective collimating optical interference system; (b) Return error of the reflective and transmissive collimating optical path interference system

    • Figure  3

      Schematic diagram of the optical path of the wedge beam splitter wavefront simulation

    • Figure  4

      Optimal wedge beam splitter angle wbest curves for different collimator F# and tilt angles of the wedge beam splitter T

    • Figure  5

      Wavefront PV curve of the plate beam splitter and wedge beam splitter interference system at different tilt angles of the beam splitter T

    • Figure  6

      Wavefront PV curve of the wedge beam splitter interference system. (a) Relationship between wavefront PV of wedge beam splitter interferometric system and collimator F#; (b) Relationship between wavefront PV of wedge beam splitter interferometric system and tilt angle of wedge beam splitter T

    • Figure  7

      Relationship curve between the optimal wedge beam splitter angle wbest, wavefront PV of wedge beam splitter interference system and the focal length of the collimator

    • Figure  8

      Illumination path of the wedge splitting medium wave infrared Fizeau interferometer

    • Figure  9

      Design results of the collimator. (a) PV of collimated wavefront for the collimator at 0° field of view; (b) PV of collimated wavefront for the collimator at 0.1° field of view; (c) Angular aberration of the normalized exit aperture for the collimator at 0° field of view

    • Figure  10

      Monte carlo simulation tolerance analysis of the collimator

    • Figure  11

      Image quality evaluation of the interferometer imaging optical path. (a) Imaging wavefront PV of the normalized field; (b) MTF curve; (c) Distortion curve

    • Figure  12

      Monte carlo simulation tolerance analysis of the interferometer imaging optical path

    • Figure  13

      Stray light analysis diagram of the wedge beam splitter. (a) Schematic diagram of stray light introduced by reflection fromthe front and rear surfaces of the wedge beam splitter; (b) Light traces at the aperture diaphragm surface

    • Figure  14

      Retrace error of wedge splitting medium wave infrared Fizeau interferometer

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10
    • Figure  11
    • Figure  12
    • Figure  13
    • Figure  14
    Optical system design of wedge beam splitter splitting mid-wave infrared Fizeau interferometer
    • Plate beam splitterWedge beam splitter
      Z50.00000.0000
      Z60.0702−0.0004
      Z70.01170.0048
      Z80.00000.0000
      Z9−0.00050.0009
      Z100.00000.0000
    • Wavelength/μmF#Focal length/mm
      Collimator3.395762
      Imaging lens3.395.8235
    • CommentSurf. typeRadiusThicknessMaterialSemi-diameterConicTilt about X
      OBJStandardInfinityInfinity-Infinity--
      1CollimatorEven asphere1091.61526.000ZnSe78.000−1.862-
      2StandardInfinity580.000-78.000--
      3Wedge beam splitterCoordinate break-0.000-0.000-−17.500
      4StandardInfinity5.000CaF225.400--
      5Coordinate break-0.000-0.000-−0.200
      6StandardInfinity0.000-25.400--
      7Coordinate break-0.000-0.000-0.200 (P)
      8Coordinate break-166.347-0.000-17.500(P)
      STOStandardInfinity26.960-3.000--
      10Imaging lensStandard37.2746.000ZnSe9.000--
      11Standard30.0005.000-9.000--
      12Standard164.9845.000ZnSe9.000--
      13Standard−52.37933.554-9.000--
      IMAStandardInfinity--3.503--
    • Tolerance typesTolerance data
      Radius/%0.1
      Surface irregularity(RMS)/λ(λ=0.6328 μm)λ/40
      Conic±0.01
      Thickness/mm±0.05
      Surface tilt/(°)±0.05
      Surface dec/mm±0.05
      Element tilt/(°)±0.05
      Element dec/mm±0.05
    • Table  1

      Wavefront standard Zernike polynomial coefficients for the plate beam splitter and wedge beam splitter at a tilt angle of beam splitter T=20°

        1/4
    • Table  2

      Collimator and imaging lens design parameters

        2/4
    • Table  3

      Lens data of the wedge splitting medium wave infrared Fizeau interferometer

        3/4
    • Table  4

      Tolerance table for the collimator

        4/4