-
摘要
超表面是一种空间变化的超薄纳米结构,在光学超分辨聚焦透镜或系统中已经得到广泛研究和应用。然而,随着超构透镜聚焦光斑缩小,不可避免产生大旁瓣,限制了透镜视场和应用潜力。本文提出了一种设计大数值孔径(
NA =0.944)超分辨弱旁瓣超构透镜的方法。针对波长λ =632.8 nm的圆偏振光,基于硅基超表面PB相位调控,实现了超分辨弱旁瓣点聚焦超构透镜。实验证明,可以实现聚焦光斑半高全宽 =0.45FWHM λ ,小于衍射极限0.53λ (衍射极限为0.5λ /NA ),旁瓣比Sidelobe Ratio (SR )=0.07。该透镜的应用有望实现超分辨光学器件或系统微型化、轻量化和集成化。Abstract
Metasurface is a spatially varying ultrathin nanostructure that has been widely studied and used in optical super-resolution focusing, either in lenses or in systems. However, with the decrease of the focal spot size of the metalens, large sidelobes are inevitably generated, limiting the field of view and potential applications of the lens. In this paper, a method for producing super-resolution metalens with a large numerical aperture (
NA =0.944) and weak sidelobe is presented. For a circularly polarized light with the wavelength ofλ =632.8 nm, a super-resolution point-focusing with a weak sidelobe is realized based on PB phase regulation of silica-based metasurface. Experimental results show that the FWHM (full-width at half maximum) of our focusing spot is 0.45λ , which is less than the diffraction limit of 0.53λ (the diffraction limit is 0.5λ /NA ), and the sidelobe ratio (SR) is 0.07. Our proposed super-resolution metalens bears the potential to realize the miniaturization, lightweight and integration of super-resolution optical devices or systems.-
Key words:
- super-resolution /
- weak sidelobe /
- metasurface /
- metalens
-
Overview
Overview: Optical super-resolution lenses have shown great potential in super-resolution microscopic systems and nano-fabrication systems. With the decrease of the focusing spot of the super-resolution lens, it is inevitable that large sidelobes and sidebands will be generated, which will lead to a limited field of view and imaging artifacts. Therefore, when designing super-resolution optical devices, it is necessary to adopt a balanced strategy between focusing spot and side lobe according to the practical applications. Metasurface is a planar structure composed of nanoscale meta-atoms, which can flexibly regulate the amplitude, phase and polarization of the optical field, being beneficial to construct complex super-resolution optical fields. The PB phase meta-atom is comparatively easy to fabricate due to its simplicity. Using Finite-Difference Time-Domain (FDTD) solutions to optimize the size of the meta-atom, we can get a structure with high transmittance. By rotating the angle of the meta-atom, we can achieve linear phase control. The application of PB phase metasurface has been demonstrated in the field of super-resolution focusing devices with suppressed sidelobe. Based on the vector angular spectrum method and particle swarm optimization (PSO) algorithm, a super-resolution point focusing lens with a large numerical aperture and weak sidelobe is optimally designed with a 32-valued phase control at the wavelength of λ=632.8 nm. Based on the silicon-based PB phase metasurface, our metalens was fabricated by electron beam lithography and orthoplastic etching. The lens radius Rlens=57λ, focal length zf=20λ, corresponding to the numerical aperture of NA=0.944. The optical field distribution of the super-resolution metalens was measured experimentally by a large-numerical-aperture microscopy system. The results show that, at the focal plane, the FWHM of the focal spot is 0.45λ, which is less than the diffraction limit of 0.53λ (the diffraction limit is 0.5λ/NA), the side-lobe ratio SR is 0.07, and the depth of focus is 0.4λ. Our proposed metalens can achieve a small depth of focus, a weak sidelobe ratio, and super-resolution point focusing. Our proposed super-resolution metalens bears the potential to realize the miniaturization, lightweight, and integration of super-resolution optical devices or systems.
-
-
图 3 硅基超构透镜理论设计结果。(a) 焦平面光场二维分布;(b) 焦平面强度曲线;(c) xz平面光场二维分布;(d) xz平面轴上聚焦光斑强度(红色实线),半高全宽FWHM (蓝色实线)和旁瓣比SR (绿色实线)参数曲线
Figure 3. Theoretical results of silicon-based metalens. (a) Two-dimensional intensity distribution in the focal plane; (b) The corresponding intensity curve in the focal plane; (c) Two-dimensional intensity distribution on xz plane; (d) Intensity (red), FWHM (blue), and SR (green) parameter on the xz plane
图 4 硅基超构透镜FDTD仿真结果。(a) 焦平面光场二维分布;(b) 焦平面强度曲线;(c) xz平面光场二维分布;(d) xz平面轴上聚焦光斑强度(红色实线),半高全宽FWHM (蓝色实线)和旁瓣比SR (绿色实线)参数曲线
Figure 4. FDTD simulation results of silicon-based metalens. (a) Two-dimensional intensity distribution in focal plane; (b) Focal plane intensity curve; (c) Two-dimensional intensity distribution on xz plane; (d) Focal spot intensity (red), FWHM (blue) and SR (green) parameter curves on the xz plane
图 6 硅基超构透镜焦平面实验结果。(a) 焦平面光场二维分布;(b) 焦平面实验测试沿x轴(绿色),y轴(蓝色)强度曲线,实验测试平均强度曲线(红色)和设计结果强度曲线(黑色)
Figure 6. Experimental results of silicon-based metalens on the focal plane. (a) Two-dimensional intensity distribution on the focal plane; (b) The corresponding intensity curves along the x-axis (green) and y-axis (blue), mean intensity curves (red) and the design results (black)
表 1 超构透镜相位数Ni
Table 1. Phase number of the metalens
环带序号 Ni #01~#38 0059MTL9K000OG0M0904T0MOC08AKDS61ALLOG #39~#76 4000C7CSFCEQIPQQM0F00GIN46A3C7JA30B2N7 #77~#115 07A02F5K2NC2B2J9H102070B00208I6N8RB0EUF -
参考文献
[1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Arch für Mikrosk Anat, 1873, 9(1): 413−468. doi: 10.1007/BF02956173
[2] Betzig E, Trautman J K, Harris T D, et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale[J]. Science, 1991, 251(5000): 1468−1470. doi: 10.1126/science.251.5000.1468
[3] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435−441. doi: 10.1038/nmat2141
[4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534−537. doi: 10.1126/science.1108759
[5] Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368
[6] Lu D, Liu Z W. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nat Commun, 2012, 3: 1205. doi: 10.1038/ncomms2176
[7] Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4: 210013. doi: 10.29026/oea.2021.210013
[8] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780−782. doi: 10.1364/OL.19.000780
[9] Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810−813. doi: 10.1126/science.1153529
[10] Gould T J, Verkhusha V V, Hess S T. Imaging biological structures with fluorescence photoactivation localization microscopy[J]. Nat Protoc, 2009, 4(3): 291−308. doi: 10.1038/nprot.2008.246
[11] Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332−1336. doi: 10.1126/science.1156947
[12] Liu X W, Kuang C F, Hao X, et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Phys Rev Lett, 2017, 118(7): 076101. doi: 10.1103/PhysRevLett.118.076101
[13] Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809−1816. doi: 10.1021/nn406201q
[14] 周锐, 吴梦雪, 沈飞, 等. 基于近场光学的微球超分辨显微效应[J]. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
Zhou R, Wu M X, Shen F, et al. Super-resolution microscopic effect of microsphere based on the near-field optics[J]. Acta Phys Sin, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
[15] Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation[J]. Opto-Electron Sci, 2022, 1(1): 210003. doi: 10.29026/oes.2022.210003
[16] Huang K, Ye H P, Teng J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser Photon Rev, 2014, 8(1): 152−157. doi: 10.1002/lpor.201300123
[17] Berry M V. Evanescent and real waves in quantum billiards and Gaussian beams[J]. J Phys A Math Gen, 1994, 27(11): L391−L398. doi: 10.1088/0305-4470/27/11/008
[18] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. J Phys A Math Gen, 2006, 39(22): 6965. doi: 10.1088/0305-4470/39/22/011
[19] Qin F, Huang K, Wu J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Sci Rep, 2015, 5: 9977. doi: 10.1038/srep09977
[20] Chen G, Li Y Y, Yu A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Sci Rep, 2016, 6: 29068. doi: 10.1038/srep29068
[21] Chen G, Li Y Y, Wang X Y, et al. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array[J]. IEEE Photon Technol Lett, 2016, 28(3): 335−338. doi: 10.1109/LPT.2015.2496148
[22] Chen G, Zhang K, Yu A P, et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light[J]. Opt Express, 2016, 24(10): 11002−11008. doi: 10.1364/OE.24.011002
[23] Yuan G H, Vezzoli S, Altuzarra C, et al. Quantum super-oscillation of a single photon[J]. Light Sci Appl, 2016, 5(8): e16127. doi: 10.1038/lsa.2016.127
[24] Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Sci Rep, 2016, 6: 38859. doi: 10.1038/srep38859
[25] Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Sci Rep, 2016, 6: 37776. doi: 10.1038/srep37776
[26] 武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜[J]. 光电工程, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660
Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electron Eng, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660
[27] Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Appl Phys Lett, 2013, 102(3): 031108. doi: 10.1063/1.4774385
[28] Yuan G H, Rogers E T F, Roy T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Sci Rep, 2014, 4: 6333. doi: 10.1038/srep06333
[29] Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Sci Rep, 2017, 7(1): 4697. doi: 10.1038/s41598-017-05060-2
[30] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031
[31] Zhang S, Chen H, Wu Z X, et al. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression[J]. Opt Express, 2017, 25(22): 27104−27118. doi: 10.1364/OE.25.027104
[32] Wu Z X, Zhang K, Zhang S, et al. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams[J]. Opt Express, 2018, 26(13): 16585−16599. doi: 10.1364/OE.26.016585
[33] Hu Y W, Wang S W, Jia J H, et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Adv Photon, 2021, 3(4): 045002. doi: 10.1117/1.AP.3.4.045002
[34] Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Adv Opt Mater, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795
[35] Li Y Y, Cao L Y, Wen Z Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Opt Lett, 2019, 44(1): 110−113. doi: 10.1364/OL.44.000110
[36] Wu Z X, Dong F L, Zhang S, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180−189. doi: 10.1021/acsphotonics.9b01356
[37] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139−152. doi: 10.1364/optica.4.000139
[38] Liu S Q, Chen S Z, Wen S C, et al. Photonic spin hall effect: fundamentals and emergent applications[J]. Opto-Electron Sci, 2022, 1(7): 220007. doi: 10.29026/oes.2022.220007
[39] Yuan G H, Rogers K S, Rogers E T F, et al. Far-field superoscillatory metamaterial superlens[J]. Phys Rev Appl, 2019, 11(6): 064016. doi: 10.1103/PhysRevApplied.11.064016
[40] Zhang Q, Dong F L, Li H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Adv Opt Mater, 2020, 8(9): 1901885. doi: 10.1002/adom.201901885
[41] Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Opt Express, 2014, 22(18): 22163−22171. doi: 10.1364/OE.22.022163
[42] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 2012, 11(5): 432−435. doi: 10.1038/nmat3280
[43] Qin F, Huang K, Wu J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Adv Mater, 2017, 29(8): 1602721. doi: 10.1002/adma.201602721
[44] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008
[45] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399
Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399
[46] Deng D M, Guo Q. Analytical vectorial structure of radially polarized light beams[J]. Opt Lett, 2007, 32(18): 2711−2713. doi: 10.1364/OL.32.002711
[47] Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Trans Antennas Propag, 2007, 55(3): 556−567. doi: 10.1109/TAP.2007.891552
[48] Wang Y J, Chen Q M, Yang W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nat Commun, 2021, 12(1): 5560. doi: 10.1038/s41467-021-25797-9
[49] Oscurato S L, Reda F, Salvatore M, et al. Shapeshifting diffractive optical devices[J]. Laser Photonics Rev, 2022, 16(4): 2100514. doi: 10.1002/lpor.202100514
-
访问统计