SAR实时成像光学处理器光机系统设计

赵洪强,张星祥,王夺,等. SAR实时成像光学处理器光机系统设计[J]. 光电工程,2022,49(9): 210421. doi: 10.12086/oee.2022.210421
引用本文: 赵洪强,张星祥,王夺,等. SAR实时成像光学处理器光机系统设计[J]. 光电工程,2022,49(9): 210421. doi: 10.12086/oee.2022.210421
Zhao H Q, Zhang X X, Wang D, et al. Optical-mechanical system design of SAR real-time imaging optical processor[J]. Opto-Electron Eng, 2022, 49(9): 210421. doi: 10.12086/oee.2022.210421
Citation: Zhao H Q, Zhang X X, Wang D, et al. Optical-mechanical system design of SAR real-time imaging optical processor[J]. Opto-Electron Eng, 2022, 49(9): 210421. doi: 10.12086/oee.2022.210421

SAR实时成像光学处理器光机系统设计

  • 基金项目:
    国家自然科学基金资助项目(61801455)
详细信息
    作者简介:
    *通讯作者: 张星祥,jan_zxx@163.com
  • 中图分类号: TN911;TH745

Optical-mechanical system design of SAR real-time imaging optical processor

  • Fund Project: National Natural Science Foundation of China (61801455)
More Information
  • 为了进一步提高合成孔径雷达(synthetic aperture radar,SAR)面对海量回波数据的实时成像处理能力,基于4f光学结构对SAR实时成像光学处理器进行了光机系统设计和分析。首先,设计了适用于滤波算法的入瞳直径21 mm、视场角7°、焦距172 mm的傅里叶变换透镜,并对4f光学系统采取紧凑化设计。然后,利用集成优化方法优化了4f光机结构中的柔性镜座,并对整体结构进行了模块化设计和分析。分析结果表明:4f光学系统成像质量趋于衍射极限,傅里叶变换透镜的MTF在55 lp/mm处优于0.57,4f光机系统在常温1g重力工况下透镜面形RMS值小于$$ \lambda /50 $$,整体结构基频大于100 Hz。4f光学处理器整体尺寸为405 mm×145 mm×92 mm,质量约为2.94 kg,其体积、质量分别仅是同等SAR数据处理水平的斜平面光学处理器的30%、48%。通过数据的模拟仿真,表明系统设计满足星载或机载的实时成像使用需求。

  • Overview: This paper is devoted to the research of synthetic aperture radar (SAR) real-time imaging processor. As the number of SAR imaging channels increases, the number of SAR imaging channels also presents new challenges. The optical processor not only has strong parallel processing ability, but also has the advantages of low power consumption, small volume, fast processing speed and programmability. Therefore, this paper designs and analyzes the SAR real-time imaging optical processor from the perspective of optical mechanical system design. Firstly, the system scheme principle of optical processor based on 4f optical structure is proposed, and the filtering algorithm is described in detail according to the principle. Secondly, according to the algorithm requirements, the relevant Fourier transform lens design is completed, and the compactness of 4f optical system is further strengthened. Then, the flexible design of the lens base is carried out, and the optimal parameter model is found by using the integrated optimization method. At the same time, it meets the modular design idea, completes the corresponding optical mechanical structure design, and obtains the optical mechanical system model of the overall scheme. The specific design results obtained based on the above research methods are as follows: in the optical design process, a Fourier transform lens with an entry pupil diameter of 21 mm, a field angle of 7°, and a focal length of 172 mm is obtained, and its MTF is better than 0.57 at 55 lp/mm. And the 4f optical system whose imaging quality tends to the diffraction limit meets the Rayleigh criterion. In the process of optical mechanical structure design, the overall size of 4f optical mechanical system is 405 mm×145 mm× 92 mm, with a mass of about 2.94 kg, and its volume and mass are only 30% and 48% of that of the inclined plane optical processor with the same SAR data processing level; At the same time, the RMS value of lens surface under normal temperature 1g gravity condition is less than λ/50(λ= 532 nm), the fundamental frequency of the overall structure is greater than 100 Hz, which can fully meet the expected design goal of the processor optical mechanical system. Finally, the simulation processing of SAR data is carried out on the optical platform. According to the simulation results, it shows that the system can be suitable for airborne or spaceborne real-time processing scenes. To sum up, the 4f optical processor designed in this paper can provide a certain reference value for improving the real-time imaging processing ability of SAR.

  • 加载中
  • 图 1  4f系统原理示意图

    Figure 1.  Schematic diagram of 4f system

    图 2  SAR光处理器工作原理示意图

    Figure 2.  Schematic diagram of SAR optical processor

    图 3  傅里叶变换透镜结构图和像质评价图。(a) 结构图;(b) 点列图;(c) MTF图;(d) 波前图

    Figure 3.  Structure diagram and image quality evaluation diagram of Fourier transform lens. (a) Structure chart; (b) Spot diagram; (c) MTF figure; (d) Wavefront figure

    图 4  光学系统结构图和像质评价图。(a) 结构图;(b) MTF图

    Figure 4.  Optical system structure diagram and image quality evaluation diagram. (a) Structure chart; (b) MTF chart

    图 5  傅里叶变换镜组结构图。(a) 前2f镜组;(b) 后2f镜组

    Figure 5.  Structure of Fourier transform. (a) 2f lens group in the front; (b) 2f lens group in the back

    图 6  柔性镜座结构示意图

    Figure 6.  Structural diagram of flexible lens base

    图 7  前2f镜组变形云图。(a) X向;(b) Y向;(c) Z

    Figure 7.  Cloud diagram of front 2f lens group deformation. (a) X direction; (b) Y direction; (c) Z direction

    图 8  4f光学处理器的系统结构图

    Figure 8.  System structure of 4f optical processor

    图 9  整体结构前两阶模态云图。(a)一阶模态云图;(b)二阶模态云图

    Figure 9.  First two modal cloud images of the whole structure. (a) First modal cloud image; (b) Second modal cloud image

    图 10  4f系统装置图和模拟结果图。(a) 装置图;(b) 模拟结果图

    Figure 10.  4f system device diagram and simulation result diagram. (a) Device diagram; (b) Simulation result diagram

    表 1  SLM规格参数

    Table 1.  SLM specifications

    规格参数具体数值
    调制类型纯相位型/纯振幅型
    像素数1920$ \times $1152
    像素大小9.2 μm
    有效像面大小17.6 mm$\times$10.7 mm
    工作波长范围400 nm~1650 nm
    填充因子95.7%
    帧频76.8/93.7/169/211.1 Hz
    下载: 导出CSV

    表 2  傅里叶变换透镜光学参数

    Table 2.  Optical parameters of Fourier transform lens

    #光学元件半径/mm厚度/mm材料半口径/mm
    1 透镜1 −171.909 15.748 SILICA 16.932
    2 −74.994 14.257 17.984
    3 透镜2 −28.628 5.682 N-KZFS11 17.919
    4 −31.483 35.986 19.444
    5 透镜3 31.483 5.682 N-KZFS11 19.623
    6 28.628 14.257 18.098
    7 透镜4 74.994 15.748 SILICA 18.245
    8 171.909 126.3 17.258
    下载: 导出CSV

    表 3  常用光机结构材料属性表

    Table 3.  Properties of common opto-mechanical structural materials

    材料名称密度$ \rho / $(g/cm3)弹性模量E/(GPa)比刚度(E/$ \rho $)/(GN·(m/g))线胀系数$ \alpha $/(10−6/K)导热系数$ \lambda $/(W/(m·K))
    TC44.411425.99.107.40
    7A092.87125.423.6142.00
    铟钢8.914115.82.6013.70
    CFRP1.8纵向9552.80~170.00
    高体分SiC/Al3.018060.08.0225.00
    下载: 导出CSV
  • [1]

    Gini F. Grand challenges in radar signal processing[J]. Front Sign Process, 2021, 1: 664232. doi: 10.3389/frsip.2021.664232

    [2]

    Bhamidipati S R M, Srivatsa C, Gowda C K S, et al. Generation of SAR images using deep learning[J]. SN Comput Sci, 2020, 1(6): 355. doi: 10.1007/s42979-020-00364-z

    [3]

    Liu F, Huang P P, Tan W X, et al. Portable Omni-directional micro deformation monitoring radar system[C]//2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Suzhou: IEEE, 2020: 1–3.

    [4]

    Kulkarni S C, Rege P P. Pixel level fusion techniques for SAR and optical images: a review[J]. Inf Fusion, 2020, 59: 13−29. doi: 10.1016/j.inffus.2020.01.003

    [5]

    Marchese L, Doucet M, Harnisch B, et al. A real-time high-resolution optical SAR processor[J]. Proc SPIE, 2010, 7669: 76690M. doi: 10.1117/12.850734

    [6]

    Marchese L, Bourqui P, Turgeon S, et al. Extended capability overview of real-time optronic SAR processing[J]. IET Int Conf Radar Syst, 2012, 8(11): 5052−5067. doi: 10.1049/CP.2012.1608

    [7]

    Jin Y R, Guo R, Gao Y S, et al. A tiling of multi-SLM is used in full resolution optical SAR data processor[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada: IEEE, 2014: 588–591.

    [8]

    Zhang J, Gao Y S, Wang K Z, et al. An optical SAR data processor based on DMD[C]//2016 Progress in Electromagnetic Research Symposium (PIERS). Shanghai: IEEE, 2016: 2893–2897.

    [9]

    蔡志鹏, 张星祥, 陈哲, 等. 新型SAR实时成像光学系统设计[J]. 液晶与显示, 2020, 35(11): 1185−1194. doi: 10.37188/YJYXS20203511.1185

    Cai Z P, Zhang X X, Chen Z, et al. New SAR real-time imaging optical system design[J]. Chin J Liquid Cryst Displays, 2020, 35(11): 1185−1194. doi: 10.37188/YJYXS20203511.1185

    [10]

    Wang D, Ouyang R, Wang K Z, et al. Optical SAR data processing configuration with simultaneous azimuth and range matching filtering[J]. Appl Opt, 2020, 59(33): 10441−10450. doi: 10.1364/AO.409825

    [11]

    游明俊. 傅里叶光学[M]. 2版. 北京: 兵器工业出版社, 2000.

    You M J. Fourier Optics[M]. 2nd ed. Beijing: Ordnance Industry Press, 2000.

    [12]

    刘洪顺, 王喆, 胡琪, 等. 基于空间光调制器的层析成像技术[J]. 中国光学, 2019, 12(6): 1338−1347. doi: 10.3788/co.20191206.1338

    Liu H S, Wang Z, Hu Q, et al. Tomography technology based on spatial light modulator[J]. Chin Opt, 2019, 12(6): 1338−1347. doi: 10.3788/co.20191206.1338

    [13]

    魏加立, 曲慧东, 王永宪, 等. 空间TOF相机大视场光学镜头结构优化设计[J]. 仪器仪表学报, 2020, 41(10): 121−128. doi: 10.19650/j.cnki.cjsi.J2006719

    Wei J L, Qu H D, Wang Y X, et al. Structure optimization design of large field of view optical lens for the space TOF camera[J]. Chin J Sci Instr, 2020, 41(10): 121−128. doi: 10.19650/j.cnki.cjsi.J2006719

    [14]

    杨云良. 低温红外镜头柔性卸载结构设计与测试[D]. 廊坊: 北华航天工业学院, 2021.

    Yang Y L. Design and test of low-temperature infrared lens flexible unloading structure[D]. Langfang: North China Institute of Aerospace Technology, 2021.

    [15]

    张刘, 郑潇逸, 张帆, 等. 大容差多柔性透镜组结构优化设计[J]. 吉林大学学报(工学版), 2021, 51(2): 478−485. doi: 10.13229/j.cnki.jdxbgxb20200053

    Zhang L, Zheng X Y, Zhang F, et al. Structural optimization design of large tolerance and multi-flexibility lens subassembly[J]. J Jilin Univ (Eng Technol Ed), 2021, 51(2): 478−485. doi: 10.13229/j.cnki.jdxbgxb20200053

    [16]

    李路, 邢昆明, 赵明. 星载激光雷达望远镜主镜超轻量化结构设计[J]. 洛阳理工学院学报(自然科学版), 2021, 31(3): 73−79. doi: 10.3969/j.issn.1674-5043.2021.03.001

    Li L, Xing K M, Zhao M. Ultra-lightweight structure design of primary mirror of receiving telescope of space-borne Lidar[J]. J Luoyang Inst Sci Technol (Nat Sci Ed), 2021, 31(3): 73−79. doi: 10.3969/j.issn.1674-5043.2021.03.001

  • 加载中

(11)

(3)

计量
  • 文章访问数:  5524
  • PDF下载数:  1017
  • 施引文献:  0
出版历程
收稿日期:  2022-01-04
修回日期:  2022-04-14
刊出日期:  2022-09-25

目录

/

返回文章
返回