波长可调谐深紫外窄带光源模块的设计及验证

俞凯雄,朱星玥,吴锜. 波长可调谐深紫外窄带光源模块的设计及验证[J]. 光电工程,2021,48(8): 210173. doi: 10.12086/oee.2021.210173
引用本文: 俞凯雄,朱星玥,吴锜. 波长可调谐深紫外窄带光源模块的设计及验证[J]. 光电工程,2021,48(8): 210173. doi: 10.12086/oee.2021.210173
Yu K X, Zhu X Y, Wu C. Design and experiment of a tunable narrow-passband deep UV light source[J]. Opto-Electron Eng, 2021, 48(8): 210173. doi: 10.12086/oee.2021.210173
Citation: Yu K X, Zhu X Y, Wu C. Design and experiment of a tunable narrow-passband deep UV light source[J]. Opto-Electron Eng, 2021, 48(8): 210173. doi: 10.12086/oee.2021.210173

波长可调谐深紫外窄带光源模块的设计及验证

  • 基金项目:
    国家重点研发计划项目(2019YFC1408600);中国博士后科学基金(2019M662365);山东省自然科学基金青年基金(ZR2020QD086);山东省重点研发计划项目(2019JZZY020711, 2018YFJH0702);山东省新旧动能转换重大工程重大课题攻关项目(S190401010001);青岛市博士后研究人员应用项目资助
详细信息
  • †同等贡献作者

  • 作者简介:
    *通讯作者: 吴锜(1963-),男,博士,教授,主要从事基于光电集成芯片的海洋传感器的研究与产业化。E-mail:qi.wu@sdu.edu.cn
  • 中图分类号: TN212;TN23

Design and experiment of a tunable narrow-passband deep UV light source

  • Fund Project: State Key Research and Development Project of China (2019YFC1408600), China Postdoctoral Science Foundation (2019M662365), Shandong Provincial Natural Science Foundation (ZR2020QD086), Key Technology Research and Development Program of Shandong (2019JZZY020711, 2018YFJH0702), Key Research Project of New and Old Kinetic Energy Conversion of Shandong Province (S190401010001), and Qingdao Postdoctoral Applied Research Project
More Information
  • 本文提出了一种中心波长连续可调的光源模块,实现了深紫外光源的窄带输出。设计的光源模块由氘灯、角度旋转台、滤光片旋转轮、不同中心波长的滤光片(220 nm,230 nm,240 nm,250 nm,260 nm,270 nm,280 nm)和光学透镜组成。基于多光束干涉理论,通过分析出射光的中心波长和入射角度之间的关系,得到了由每个滤光片出射的中心波长和角度旋转台旋转角度之间的定标关系式。实验结果表明,当角度旋转台入射角范围在0~30°时,每个滤波片的可调谐范围可达到10 nm,实现紫外光源模块的单色光可调谐范围212 nm~280 nm,能满足海水中硝酸盐浓度的测量要求。

  • Overview: Nitrate is the mainly form of existence of nitrogen in seawater and is related to the outbreak of red tides. The ultraviolet (UV) absorption spectroscopy based on Lambert Beer law is one of the major technologies of nitrate measurement. This technology has a high requirement for the monochromaticity of light source. However, the present commercial nitrate sensors, including SUNA, utilize the broadband light source, which may lead to measurement errors. Therefore, it is important to design a new UV tunable light source with monochromaticity for the nitrate measurement system. Currently, both UV Laser Diode (LD) and UV Light Emitting Diode (LED) are the widely used UV light sources, but they are not suitable for the long-term and in-situ nitrate measurement system due to the low power of these light sources. Deuterium lamp, as a kind of UV gas light source with high power and stability, is a good choice to obtain monochromatic lights with different filters. This paper proposes a new UV tunable light source module based on the principles of Fabry-Perrot interference and multiple-beam interference. This light source module could obtain continuously adjustable ultraviolet light by changing the angles between the incident light and the filters. The module consists of a deuterium lamp, horizontal and vertical rotating tables, UV optical filters with different central wavelengths, and collimating lens. The filters are placed in the horizontal rotating table which has the filter capacity. UV narrowband light with different central wavelengths could be obtained by changing the position of the vertical rotating table. The horizontal rotating table is utilized to change the angles between the incident light and filters. The UV tunable light source has 7 optical filters with central wavelengths of 220 nm, 230 nm, 240 nm, 250 nm, 260 nm, 270 nm and 280 nm respectively. The experiment results demonstrate that with the rotation angle from 0 to 30°, each filter can realize wavelength tuning range of 10 nm, and the designed deep UV tunable light source module can obtain monochromatic light with the wavelength ranging from 212 nm to 280 nm. With the presented new light source module and the data processing method, the absorbance spectrum is smoother and more distinguishable than those with broadband light source. This paper proposes a reliable method to realize the UV tunable light source module for the nitrate measurement system and verifies the feasibility of this system. This work can provide the integration and optimization of the nitrate sensor with technical supports.

  • 加载中
  • 图 1  多光束干涉原理图

    Figure 1.  Schematic diagram of the multiple-beam interference

    图 2  紫外可调谐光源模块原理图

    Figure 2.  Schematic diagram of the UV tunable light source module

    图 3  实验装置图

    Figure 3.  Experimental equipment

    图 4  光源控制软件。

    Figure 4.  The control program.

    图 5  实验装置示意图

    Figure 5.  Schematic diagram of the experimental device

    图 6  不同中心波长滤光片的原始数据和平滑后的数据

    Figure 6.  Original and smoothed spectral data of filters with different central wavelengths

    图 7  220 nm的滤光片中心波长与旋转角度的关系

    Figure 7.  Relationship between the central wavelength and the rotation angle

    图 8  宽光谱光源与窄带光源的光强对比

    Figure 8.  Comparison of the broadband light source and narrowband light source

    图 9  西太平洋海水样品的吸光度光谱。

    Figure 9.  The absorbance of West Pacific seawater samples.

    表 1  不同紫外滤光片基于式(12)计算的拟合参数

    Table 1.  Fitting parameters of the equation (12) of different UV filters

    Filter 220 nm 228 nm 239 nm 250 nm 260 nm 270 nm 280 nm
    λ0 221.99 229.78 240.45 251.25 261.83 270.89 279.70
    n/N 0.6808 0.7302 0.7548 0.6590 0.7662 0.7564 0.7809
    D0 3.0762 5.9561 6.5074 4.3775 8.0196 6.4473 6.6042
    Central wavelength calibration error/% 0.904 0.781 0.607 0.500 0.704 0.330 0.107
    下载: 导出CSV
  • [1]

    王雪霁, 胡炳樑, 于涛, 等. 基于LLE-BPNN的小麦岛海水硝酸盐含量分析[J]. 光谱学与光谱分析, 2019, 39(5): 1503-1508. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905034.htm

    Wang X J, Hu B L, Yu T, et al. Analysis of nitrate in seawater of wheat island based on LLE-BPNN[J]. Spectrosc Spect Anal, 2019, 39(5): 1503-1508. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905034.htm

    [2]

    潘俊, 于非, 任强, 等. 基于光学传感器在南黄海硝酸盐调查中的使用初探[J]. 海洋科学, 2017, 41(12): 9-16. doi: 10.11759/hykx20170510001

    Pan J, Yu F, Ren Q, et al. Reliability analysis of spatial and temporal nitrate variations estimated by SUNA in the South Yellow Sea[J]. Mar Sci, 2017, 41(12): 9-16. doi: 10.11759/hykx20170510001

    [3]

    Ogura N, Hanya T. Nature of ultra-violet absorption of sea water[J]. Nature, 1966, 212(5063): 758. doi: 10.1038/212758a0

    [4]

    Zhu X Y, Yu K X, Zhu X F, et al. An improved algorithm for measuring nitrate concentrations in seawater based on deep-ultraviolet spectrophotometry: a case study of the Aoshan bay seawater and western pacific seawater[J]. Sensors, 2021, 21(3): 965. doi: 10.3390/s21030965

    [5]

    叶江雷, 吴云辉, 苏秋芳, 等. 光度法检测地表水中硝酸盐氮、亚硝酸盐氮对朗伯-比尔定律的偏离[J]. 福建水产, 2015, 37(5): 396-391. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSC201505007.htm

    Ye J L, Wu Y H, Su Q F, et al. The deviation of the Lambert-Bill law from determination of NO3--N, NO2--N in surface water by spectrophotometry[J]. J Fujian Fish, 2015, 37(5): 396-391. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSC201505007.htm

    [6]

    Poornima D, Shanthi R, Ranith R, et al. Application of in-situ sensors (SUNA and thermal logger) in fine tuning the nitrate model of the Bay of Bengal[J]. Remote Sens Appl: Soc Environ, 2016, 4: 9-17. http://www.sciencedirect.com/science/article/pii/S235293851630026X

    [7]

    Snazelle T T. Results from laboratory and field testing of nitrate measuring spectrophotometers[R]. Reston, VA: U. S. Geological Survey, 2015: 1-15.

    [8]

    Sakamoto C M, Johnson K S, Coletti L J. Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer[J]. Limnol Oceanogr: Methods, 2009, 7(1): 132-143. doi: 10.4319/lom.2009.7.132

    [9]

    Zielinski O, Voβ D, Saworski B, et al. Computation of nitrate concentrations in turbid coastal waters using an in situ ultraviolet spectrophotometer[J]. J Sea Res, 2011, 65(4): 456-460. doi: 10.1016/j.seares.2011.04.002

    [10]

    朱笑凡. 基于深紫外波长可调光源的海水硝酸盐测量装置[D]. 济南: 山东大学, 2020.

    Zhu X F. Seawater nitrate measurement device based on deep ultraviolet wavelength adjustable light source[D]. Ji'nan: Shandong University, 2020.

    [11]

    Shaw G A, Siegel A M, Model J, et al. Recent progress in short-range ultraviolet communication[J]. Proc SPIE, 2005, 5796: 214-225. doi: 10.1117/12.603196

    [12]

    物理光学[M]. 4版. 北京: 电子工业出版社, 2012.

    [13]

    黄腾超, 陈海星, 李海峰, 等. 可调谐液晶法-珀滤光片的研究[J]. 光子学报, 2003, 32(12): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200312007.htm

    Huang T C, Chen H X, Li H F, et al. A research on tunable liquid crystal Fabry-Perot filter[J]. Acta Photonica Sin, 2003, 32(12): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200312007.htm

    [14]

    Murali A, Kakarla H K, Priyadarshini G M A. Improved design debugging architecture using low power serial communication protocols for signal processing applications[J]. Int J Speech Technol, 2021, 24(2): 291-302. doi: 10.1007/s10772-020-09784-x

    [15]

    闫啸, 李树江, 王向东. 基于嵌入式Linux与Qt的植保机流量控制器设计与实现[J]. 计算机测量与控制, 2019, 27(10): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201910020.htm

    Yan X, Li S J, Wang X D. Design and implementation of flow controller of plant protection machine based on embedded Linux and Qt[J]. Comput Meas Control, 2019, 27(10): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201910020.htm

    [16]

    Nguyen C V, Le Quang T, Vu T N, et al. A non-contact infection screening system using medical radar and Linux-embedded FPGA: implementation and preliminary validation[J]. Inform Med Unlocked, 2019, 16: 100225. doi: 10.1016/j.imu.2019.100225

  • 加载中

(9)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-05-27
修回日期:  2021-07-30
刊出日期:  2021-08-15

目录

/

返回文章
返回