Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube
-
摘要
为了实现复杂、恶劣环境下工程机械表面无损的应力监测方式,实现对大型工程机械的实时动态监测,提出了基于磁控溅射技术的光纤布拉格光栅(FBG)应力传感器封装方法。并对完全嵌套(整个栅区嵌套毛细铜管)和两端嵌套(栅区两端嵌套毛细铜管)两种封装方法开展了研究。从理论分析和有限元仿真的角度比较了传感器的增敏效果,前后结果一致。制备了传感器实物并进行了温度、应力和对比实验。仿真实验结果表明,该模型下FBG传感器能提高约7.5%的灵敏度。温度实验表明第二种封装结构的温度反馈相关系数R2达到了0.99948,在30 ℃~80 ℃范围内呈现良好的线性度;应力实验的相关系数R2也达到0.99924,灵敏度为6.14 pm/MPa,在该实验搭建的解调系统下精度达到0.05 MPa,可以快速、精确地解调应力。对比实验表明,光栅解调仪组成的监测系统比应变片组成的监测系统具有更高的精度,最大偏差值减小了59.8%。嵌套毛细铜管的金属化方式结合有机胶固定的封装结构简单、灵敏度和精度高,可以满足大型工程机械表面无损实时健康监测的需求。
Abstract
In order to realize the non-destructive and real-time dynamic stress monitoring method of the construction machinery surface in complex and harsh environments, a fiber Bragg grating (FBG) stress sensor packaging method based on magnetron sputtering technology is proposed. Two packaging methods of complete embedding (the capillary copper tube embedded in the entire grating area) and two sides embedding (capillary copper tube nested at both ends of the grating area) are studied. The sensitization effect of the sensor is analyzed from the perspective of theory and finite element, and the results are consistent. The physical sensors are made, and temperature, stress, and comparison experiments are carried out. Simulation and experiment show that the FBG sensor improves the sensitivity by about 7.5% under this model. The temperature experiment shows that the temperature feedback correlation coefficient R2 of the second package structure reaches 0.99948, which shows good linearity in the range of 30 ℃~80 ℃; the stress experiment correlation coefficient R2 also reaches 0.99924, and the sensitivity is 6.14 pm/MPa. The accuracy of demodulation system reaches 0.05 MPa, it can demodulate stress quickly and accurately. Comparative experiments show that the monitoring system composed of grating demodulator has higher accuracy than the monitoring system composed of strain gauges, and maximum deviation value smaller 59.8%. The packaging structure of metallization method of embedded capillary copper tube combined with organic glue fixed is simple, high sensitivity, and precision, can meet the needs of large-scale construction machinery surface non-destructive real-time health monitoring.
-
Key words:
- fiber Bragg grating(FBG) /
- magnetron sputtering /
- temperature sensor /
- stress sensor
-
Overview
Overview: As a new type of optical measuring element, fiber Bragg grating (FBG) has many advantages, such as small size, anti-electromagnetic interference, simple structure and easy replacement. The traditional electromagnetic sensor has many disadvantages, such as large volume, complex installation, easy corrosion and so on. A good packaging method can not only effectively protect the grating from external damage, but also increase the sensitivity of the sensor in a certain range. The monitoring environment of large-scale construction machinery is generally very harsh. In order to realize the non-destructive and real-time dynamic stress monitoring of large-scale construction machinery surface, a new packaging method of fiber Bragg grating sensor is proposed by using magnetron sputtering technology combined with organic adhesive fixation. The grating metallization package can increase the mechanical strength and sensitivity by covering the grating area with a thin metal coating. The sensor uses capillary copper tube as embedded material, copper powder is filled in the capillary copper tube to assist in fixing the grating, and laser welding technology is used to package the nozzle. Two encapsulation methods are proposed in this paper, one is full nesting (copper capillary tubes are nested in the whole grid area), the other is to nest capillary copper tubes at both ends of the grid region. This paper compares the sensitization effect of the sensor from the perspective of theoretical analysis and finite element simulation, and the results are consistent. When the bending stress is measured, the structure of the sensor can improve the sensitivity, which is related to the diameter of the capillary copper tube. Simulation, temperature, stress and contrast tests were carried out. The simulation results show that the sensitivity of FBG sensor can be improved by 7.5%. Temperature experiments show that the temperature feedback correlation coefficient of the second packaging structure reaches 0.99948, showing good linearity in the range of 30 ℃~80 ℃. The correlation coefficient R2 of the stress experiment is 0.99924, and the sensitivity is 6.14 pm/Mpa. The accuracy of the demodulation system is 0.5×10-1 MPa, which can demodulate the stress quickly and accurately. The contrast experiment shows that the grating monitoring system has higher accuracy than the strain gauge monitoring system, and the maximum deviation is reduced by 59.8%. The metallization method of nested copper capillary tube combined with organic glue fixation has the advantages of simple structure, high sensitivity and precision, which can meet the needs of large-scale construction machinery surface non-destructive real-time health monitoring.
-
-
表 1 应变转化应力汇总表
Table 1. The summary table of strain convert into stress
Strain/με Stress/MPa Strain/με Stress/MPa Experimental Average Experimental Average 204 949 204 207.33 41.47 1002 976.67 195.33 214 979 386 1139 403 397.67 79.53 1207 1174.67 234.93 404 1178 570 1328 597 587.67 117.53 1403 1367 273.4 596 1370 759 1528 795 781.33 156.27 1613 1573 314.6 790 1578 表 2 理论、应变片、解调仪应力汇总表
Table 2. The stress summary table of theory, strain gauges and demodulation
Theory stress/MPa Stress/MPa Stress gauge Demodulation Convert value Deviate with theory Value Deviate with theory 40 41.47 1.47 41.43 1.43 80 79.53 0.47 80.67 0.67 120 117.53 2.47 119.54 0.46 160 156.27 3.73 160.23 0.23 200 195.33 4.67 198.12 1.88 240 234.93 5.07 238.97 1.03 280 273.4 6.6 278.39 1.61 320 314.6 5.4 317.35 2.65 -
参考文献
[1] Lv J L, Hu Z C, Ren G F, et al. Research on new FBG displacement sensor and its application in Beijing Daxing airport project[J]. Optik, 2019, 178: 146-155. doi: 10.1016/j.ijleo.2018.09.117
[2] Van Der Kooi K, Hoult N A. Assessment of a steel model truss using distributed fibre optic strain sensing[J]. Eng Struct, 2018, 171: 557-568. doi: 10.1016/j.engstruct.2018.05.100
[3] Zhou Z, Wang Z Z, Shao L. Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment[J]. J Sens, 2016, 2016: 3953750. doi: 10.1155/2016/3953750
[4] Hong C Y, Zhang Y F, Yang Y Y, et al. A FBG based displacement transducer for small soil deformation measurement[J]. Sens Actuator A Phys, 2019, 286: 35-42. doi: 10.1016/j.sna.2018.12.022
[5] Gąsior P, Malesa M, Kaleta J, et al. Application of complementary optical methods for strain investigation in composite high pressure vessel[J]. Compos Struct, 2018, 203: 718-724. doi: 10.1016/j.compstruct.2018.07.060
[6] 赵颖, 孙伟民, 宋大伟, 等. 陶瓷封装对光纤光栅体温测量探头效果的影响[J]. 应用光学, 2012, 33(6): 1173-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201206038.htm
Zhao Y, Sun W M, Song D W, et al. Effect of ceramic packages on fiber grating measuring temperature probe[J]. J Appl Opt, 2012, 33(6): 1173-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201206038.htm
[7] 田赫, 陈天庭, 白岩, 等. 玻璃封装医用小型光纤光栅温度传感探头[J]. 光学 精密工程, 2017, 25(12): 3105-3110. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201712017.htm
Tian H, Chen T T, Bai Y, et al. Medical miniature fiber grating temperature sensing probe encapsulated with glass[J]. Opt Precis Eng, 2017, 25(12): 3105-3110. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201712017.htm
[8] Terroba F, Frövel M, Atienza R. Structural health and usage monitoring of an unmanned turbojet target drone[J]. Struct Health Monit, 2019, 18(2): 635-650. doi: 10.1177/1475921718764082
[9] Wada D, Igawa H, Kasai T. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique[J]. Appl Opt, 2016, 55(25): 6953-6959. doi: 10.1364/AO.55.006953
[10] 魏莉, 余玲玲, 姜达州, 等. 基于膜片与菱形结构的光纤布拉格光栅加速度传感器[J]. 中国激光, 2019, 46(9): 0910003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201909038.htm
Wei L, Yu L L, Jiang D Z, et al. Fiber Bragg grating accelerometer based on diaphragm and diamond structure[J]. Chinese J Lasers, 2019, 46(9): 0910003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201909038.htm
[11] Zhao Z G, Zhang Y J, Li C, et al. Monitoring of coal mine roadway roof separation based on fiber Bragg grating displacement sensors[J]. Int J Rock Mech Min Sci, 2015, 74: 128-132. doi: 10.1016/j.ijrmms.2015.01.002
[12] Jia Z G, Ren L, Li H N, et al. Pipeline leakage identification and localization based on the fiber Bragg grating hoop strain measurements and particle swarm optimization and support vector machine[J]. Struct Control Health Monit, 2019, 26(2): e2290. doi: 10.1002/stc.2290
[13] Wang J Y, Jiang L, Sun Z R, et al. Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing[J]. Photonic Sens, 2017, 7(1): 20-26. doi: 10.1007/s13320-016-0331-y
[14] 张文涛, 黄稳柱, 李芳. 高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用[J]. 光电工程, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
Zhang W T, Huang W Z, Li F. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electron Eng, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
[15] 谢凯, 谭滔, 穆博鑫, 等. 角钢结构光纤光栅位移传感器的研究[J]. 光电工程, 2018, 45(9): 180106. doi: 10.12086/oee.2018.180106
Xie K, Tan T, Mu B X, et al. Study on fiber Bragg grating displacement sensor with angle steel structure[J]. Opto-Electron Eng, 2018, 45(9): 180106. doi: 10.12086/oee.2018.180106
[16] 岳音, 王源, 段建立, 等. 光纤光栅CFRP混凝土复合拱裂缝监测实验研究[J]. 中国激光, 2015, 42(8): 0805004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508024.htm
Yue Y, Wang Y, Duan J L, et al. Experimental study on fiber Bragg grating monitoring the crack of CFRP concrete composite arch[J]. Chin J Lasers, 2015, 42(8): 0805004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508024.htm
[17] Kuang Y, Guo Y X, Xiong L, et al. Packaging and temperature compensation of fiber Bragg grating for strain sensing: a survey[J]. Photonic Sens, 2018, 8(4): 320-331. doi: 10.1007/s13320-018-0504-y
[18] 张欣颖, 陈爽. 石英套管封装光纤光栅温度传感器[J]. 计测技术, 2018, 38(6): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC201806004.htm
Zhang X Y, Chen S. FBG temperature sensor with quartz casing package[J]. Metrol Meas Technol, 2018, 38(6): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC201806004.htm
[19] Grandal T, Zornoza A, López A, et al. Analysis of fiber optic sensor embedded in metals by automatic and manual TIG welding[J]. IEEE Sens J, 2019, 19(17): 7425-7433. doi: 10.1109/JSEN.2019.2916639
[20] 王裕波, 李玉龙, 吕明阳. 激光焊接封装的光纤光栅智能悬臂梁[J]. 激光与红外, 2016, 46(5): 587-592. doi: 10.3969/j.issn.1001-5078.2016.05.015
Wang Y B, Li Y L, Lü M Y. Smart cantilever beam of fiber Bragg grating packaged by laser welding[J]. Laser Infrared, 2016, 46(5): 587-592. doi: 10.3969/j.issn.1001-5078.2016.05.015
[21] Guo Y X, Xiong L, Liu H H. Research on the durability of metal-packaged fiber Bragg grating sensors[J]. IEEE Photon Technol Lett, 2019, 31(7): 525-528. doi: 10.1109/LPT.2019.2900069
[22] 甄聪棉, 李壮志, 侯登录, 等. 真空蒸发镀膜[J]. 物理实验, 2017, 37(5): 27-31. doi: 10.3969/j.issn.1005-4642.2017.05.006
Zhen C M, Li Z Z, Hou D L, et al. Preparation of aluminum film by vacuum evaporation[J]. Phys Exp, 2017, 37(5): 27-31. doi: 10.3969/j.issn.1005-4642.2017.05.006
[23] 赵向杰. 磁控溅射镀膜技术的研究及发展趋势[J]. 合成材料老化与应用, 2020, 49(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202002035.htm
Zhao X J. Development and research of magnetron sputtering coating technology[J]. Synth Mater Aging Appl, 2020, 49(2): 120-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202002035.htm
[24] 王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506
Wang H, Zheng G, Chen H B, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electron Eng, 2019, 46(5): 180506. doi: 10.12086/oee.2019.180506
[25] Xu M G, Reekie L, Chow Y T, et al. Optical in-fibre grating high pressure sensor[J]. Electron Lett, 1993, 29(4): 398-399. doi: 10.1049/el:19930267
[26] 何进飞, 梁磊. 大型金属结构动态检测中的温度补偿方法研究[J]. 武汉理工大学学报, 2010, 32(12): 113-116. doi: 10.3963/j.issn.1671-4431.2010.12.027
He J F, Liang L. Research on the methods of temperature compensation in the dynamic monitoring of large metal structures[J]. J Wuhan Univ Technol, 2010, 32(12): 113-116. doi: 10.3963/j.issn.1671-4431.2010.12.027
-
访问统计