New website getting online, testing
Analysis of the effect of cloud thickness on the performance of blue-green laser communication
  • Abstract

    When the airborne laser transmitter is located above or in the center of the cloud, the cloud will reduce the laser communication performance. In order to solve this problem, the effects of different types of clouds on laser energy attenuation, signal-to-noise ratio (SNR), maximum symbol transmission rate and bit error rate are simulated and analyzed. It is concluded that the cloud mainly causes laser energy attenuation, which affects maximum transmission rate and bit error rate, but has little effect on SNR. For communication systems with link margin greater than 18.9 dB, 4 km cloud cover is allowed on the link. The effect of cloud on the maximum communication rate and bit error rate is mainly caused by inter-symbol crosstalk caused by time extension. Cirrus has little effect on communication performance, cumulus has a great impact on communication performance, and stratus, stratocumulus, and cumulonimbus have a greater influence on the communication performance, but the differences between the three types of clouds are small and could be not be distinguished. Altostratus cloud and nimbostratus have greatest influence on communication performance, of which nimbostratus has greater influence than altostratus cloud.

    Keywords

  • 上述文献在分析云层对通信性能的影响时仅在红外波段分析了云层厚度对误码率和最大传输速率的影响,但实际通信系统中造成误码的因素除了云层外,还有湍流的影响,并且蓝绿激光通信系统在传输距离和发散角与接收孔径方面均比红外通信系统大,因此不能直接参考红外波段的研究结论;在蓝绿波段仅从光学角度分析了能量的衰减与时间展宽,未对通信性能进行分析,也未对云层进行详细分类。

    在机载蓝绿激光通信中,如果激光发射器位于云层上方或中央,云层会使激光能量衰减,导致通信质量下降,因此需要分析云层对蓝绿激光通信的影响,为改善方法的研究提供理论依据。

    本文详细分析不同类型的云层及云层厚度对蓝绿激光通信的影响,并比较云层和湍流对通信影响的差异,为后续减小云层对通信影响的技术研究提供理论依据。

    云对激光的衰减主要是米氏散射。在现有云层对蓝绿激光通信的分析中,Bucher和Mooradian通过实验给出了激光透过云之后的信号波形[-];狄凌峰等通过实验计算了532 nm激光在近地大气中的散射相位函数和气溶胶分布[];Hess等通过理论公式计算了不同类型的云的衰减系数[];胡秀寒等仿真分析了云高度和云厚度对激光到达海面的能量、角度分布、空间分布和时间分布的影响[]。在现有云层对红外激光通信的分析中,Arnon等通过蒙特卡洛仿真给出了脉冲经过云层后的双Gamma拟合曲线和无码间串扰时的最大传输速率[-];刘建斌等计算了四种类型云的消光系数、单次散射返照率、不对称因子和散射相函数[];陈纯毅等计算了红外波段激光通过云层后有码间串扰的误码率[]

    根据Vande Hulst公式,激光经过云层的能量透过率为[]

    云的光学厚度与物理厚度存在如下关系:

    {Lc=F×1.69τ(1<cosθ>+1.42τ10Lc=F(10.046τ)τ<10,
    云层类型 积云 层云 层积云 积雨云 雨层云 高层云 -25℃卷云 -50℃卷云
    衰减系数/m-1 0.0539 0.0418 0.045 0.044 0.128 0.108 0.000662 0.000072
    CSV Show Table

    云由于所处高度不同,按其微观粒子组成可分为水云、冰水混合云与冰云。积云、层云和层积云高度较低,属于水云;雨层云、积雨云和高层云云层较厚,属于冰水混合云;卷云高度较高,属于冰云。其中积云与卷云一般在晴天出现,而其他类型的云一般在阴天出现,他们的衰减系数如表 1[, -]

    τ=kextZ,

    其中:F是与云层的光学入射角有关的函数,当光线垂直入射时,F的值为1。$ < \cos \theta > $为散射角的平均余弦值,典型取值θ=30°。

    其中:$\tau $为光学厚度,${k_{{\rm{ext}}}}$为衰减系数,Z为物理厚度。

    图 1知,光学厚度小于200时,激光能量衰减比较剧烈,之后能量衰减渐缓;云层为最大光学厚度1024时,对光的衰减约为19 dB。因此对于链路余量大于20 dB的通信系统,云层的存在不会使通信中断。

    Figure 1. Optical thickness and transmittance
    Full-Size Img PowerPoint

    Optical thickness and transmittance

    由于机载发射器距海平面最高为8 km,云的衰减系数最大为0.128 m-1,因此最大光学厚度为1024。仿真光学厚度0~1024的云层与相应的激光透过率,仿真结果如图 1

    Figure 2. Cloud thickness and transmittance
    Full-Size Img PowerPoint

    Cloud thickness and transmittance

    其中M为无云时的链路余量。仿真不同类型的云及云层厚度对链路余量的影响,结果如图 2

    值得注意的是,由于卷云与积云的水平面积小,呈现晴天,晴天云层下方气溶胶对激光的衰减比阴天时的小。根据文献[],中纬度532 nm激光从距地8 km处向下发射,阴天时大气衰减比晴天多2.7 dB,在设计系统链路余量时需要考虑。因此,为使系统在链路上存在4 km的云层时也能正常接收信号,按能量衰减最为严重的雨层云计算,雨层云使激光能量减小了16.18 dB,由于出现雨层云时为阴天,阴天大气衰减又比晴天时多2.7 dB,则整体链路余量应大于18.88 dB。

    Mc=M+10lg(Lc),

    有云层时,通信系统的链路余量为

    图 2所示,卷云的透过率最大,云层厚度4 km时,激光通过-25 ℃卷云时能量减小了0.56 dB,-50 ℃卷云时能量减小了0.06 dB;层云、层积云和积雨云对能量衰减的趋势基本一致,4 km的云层厚度使能量减小了11.5 dB~11.8 dB;其次是积云,4 km的云层使能量减小了12.5 dB;雨层云和高层云对能量的衰减最大,云层厚度4 km时,雨层云使激光能量减小了16.18 dB,高层云使激光能量减小了15.45 dB。

    其中:${\gamma _{{\rm{SN}}{{\rm{R}}_0}}}$为不考虑云层与湍流时的信噪比,$\sigma _{\rm{l}}^2$为Rytov方差,${\Lambda _{\rm{L}}}$为与通信距离和接收孔径有关的参数,A为孔径平均因子,定义$A{\rm{ = }}\sigma _{\rm{I}}^2(D)/\sigma _{\rm{I}}^2(0)$,$\sigma _{\rm{I}}^2$为闪烁指数,表征湍流的强弱。

    Figure 4. Effect of cloud thickness on SNR in weak turbulence
    Full-Size Img PowerPoint

    Effect of cloud thickness on SNR in weak turbulence

    考虑云层厚度与湍流强度时通信系统的信噪比为

    根据文献[],中纬度532 nm激光从距地8 km处向下发射,晴天时大气衰减Latm为74.58%,阴天为40.06%。

    γSNR0=γSNR01+1.63(σl2)6/5ΛL+Aγ2SNR0,

    图 3图 4所示,云层厚度对信噪比的影响均较小,其中卷云厚度对信噪比无明显影响;积云次之;其次是层云、层积云和积雨云,不同湍流强度下信噪比均减小了不到0.03 dB;高层云和雨层云对信噪比的影响相对较大,云层厚度4 km时,高层云使中湍流信噪比减小了0.036 dB,弱湍流信噪比减小了0.061 dB;雨层云使中湍流信噪比减小了0.043 dB,弱湍流信噪比减小了0.073 dB。这也从侧面反应了随着湍流强度减弱,云层厚度对信噪比的影响逐渐增大,但云层对信噪比的影响远不如湍流对信噪比的影响,湍流的存在使信噪比从166 dB~309 dB骤降到5 dB~7 dB,云层的存在只使信噪比下降了不到0.1 dB,说明云层影响通信质量的方式不是降低信噪比,文献[-]指出,云层会使脉冲信号产生严重的时间展宽,从而造成高速率通信时的码间串扰。

    在不考虑云层厚度和湍流强度的情况下,采用OOK调制时,信噪比为[]

    γSNR0=RPTLgeoLatm4eB,
    Lgeo=DR22WL2=π2θ2DR28λ2+(Lπθ2)2/2

    假设蓝绿激光发射器位于L=8 km高处,通信波长λ=0.532 μm,探测器光电响应度R=0.7A/W,探测器滤波带宽B=3 GHz,发散角θ=15 mrad,接收孔径DR=250 mm,发射功率PT=15 W。则不考虑湍流和云层厚度时,晴天信噪比为309.18 dB,阴天信噪比为166.06 dB。在中湍流$C_n^2 = 3.19 \times {10^{ - 15}}$和弱湍流$C_n^2 = 3.19 \times {10^{ - 18}}$条件下,根据式(5)~式(7),考虑湍流强度但不考虑云层厚度时,中湍流信噪比为5.676 dB,弱湍流信噪比为6.814 dB。对该条件下经过不同云层厚度时接收端的信噪比进行仿真结果如图 3图 4

    Figure 3. Effect of cloud thickness on SNR in moderate turbulence
    Full-Size Img PowerPoint

    Effect of cloud thickness on SNR in moderate turbulence

    γSNR0=γSNR0Lc1+1.63(σl2)6/5ΛL+A(γSNR0Lc)2

    不考虑云层厚度但考虑湍流强度时,通信系统的信噪比为[]

    其中:R为光电响应度,PT为激光发射功率,e为电子电荷,B为探测器滤波带宽,Latm为大气衰减,Lgeo为几何衰减,其表达式为[]

    云层厚度对最大传输速率影响较大,相同物理厚度时,卷云的最大传输速率最高,其次是积云、层云、层积云和积雨云,传输速率最小的为雨层云和高层云。云层厚度4 km时,雨层云与高层云的最大传输速率小于104 bps,积云、层云、层积云和积雨云略大于104 bps,-25 ℃卷云为2×105 bps,-50 ℃卷云为1.3×106 bps。

    Figure 7. Cloud thickness and maximum symbol transmission rate
    Full-Size Img PowerPoint

    Cloud thickness and maximum symbol transmission rate

    ×[k1k2exp(tck2)(tc+1k2)+k3k4exp(tck4)(tc+1k4)],
    系数 τ=20.8 τ=23.4 τ=26 τ=28.6 τ=31.2
    k1 120.1 34.1 12.4 5.1 2.4
    k2 1.9×107 1.9×107 1.1×107 0.8×107 0.7×107
    k3 1.55 1.6 0.66 0.28 0.19
    k4 3×106 3×106 2.4×106 1.8×106 1.6×106
    CSV Show Table
    h(t)=[k1exp(k2t)+k3exp(k4t)]tU(t),
    Figure 6. Pulse energy detection ratio and maximum symbol transmission rate
    Full-Size Img PowerPoint

    Pulse energy detection ratio and maximum symbol transmission rate

    式中:${\omega _0}$为散射系数与消光系数之比,对可见光${\omega _0}$≈1;θ为云的平均散射角,典型值是θ=30°;Z为云层厚度,c为光速。云层厚度与最大传输速率的关系如图 7

    Cr=1(k1k22+k3k42)1

    文献[-]通过蒙特卡洛仿真得到了532 nm的激光脉冲通过五组不同光学厚度的薄云层时的波形,并拟合成双Gamma函数:

    定义脉冲探测能量比${C_{\rm{r}}}$为探测器实际探测到的脉冲能量与脉冲总能量的比值,${t_{\rm{c}}}$为探测器脉冲能量积分时间,则:

    最大码元传输速率

    tc=Zc{0.3ω0τθ2[(1+2.25ω0τθ2)1.51]1},

    保证无码间串扰的最大传输速率随脉冲探测能量比的增大而减小,当${C_{\rm{r}}}$=1,τ=20.8~31.2时,最大传输速率均在105 bps量级。

    Rb1/tc

    但云层的物理厚度较大时,上述公式不再适用,半功率点的时间扩展公式为[]

    仿真曲线与拟合曲线如图 5

    最大码元传输速率与${C_{\rm{r}}}$的关系如图 6

    式中:k1k2k3k4为双Gamma函数的常量系数,U(t)为单位阶跃函数,参数拟合结果如表 2

    Figure 5. Impulse response fitting curve
    Full-Size Img PowerPoint

    Impulse response fitting curve

    式中:TS为码间间隔,${z_{\rm{c}}}({t_0} + {T_{\rm{S}}})$为前一码元在后一码元的判决时刻产生的串扰。则${f_\chi }$可表示为

    Figure 9. SNR and bit error rate
    Full-Size Img PowerPoint

    SNR and bit error rate

    +0.25χerfc(χ+C(t0)/22σn)fχ(χ)dχ,

    式中:t0判决时刻,C(t0)为t0时的激光脉冲响应幅度,χt0时的总串扰量,$\sigma _{\rm{n}}^2$为接收器噪声方差,${f_\chi }$为χ的概率密度函数,信噪比${R_{{\rm{SNR}}}} = C({t_0})/{\sigma _{\rm{n}}}$,令${z_{\rm{c}}}({t_0}) = {s_0}C({t_0})$为t0时的有用信号幅度,s0为接收端对脉冲响应的放大倍数,若只考虑前一码元对后一码元的串扰,则χ可写为

    在通信速率小于最大传输速率时,由时间扩展引起的码间串扰并不会影响性能,误码率主要受湍流造成的光强闪烁和接收器噪声影响;而当通信速率超过最大传输速率,码间串扰则成为主要因素,其波形示意图如图 8

    从图中可以看出,信噪比相同时,云层厚度对误码率的影响很大。当信噪比为5 dB时,云层的光学厚度从$\tau $=0增加到$\tau $=20.8,误码率从9.7×10-5增加到9.9×10-2,而当云层光学厚度增加到$\tau $=31.2时,误码率已经达到4.5×10-1,严重影响正常通信。而增加信噪比对误码率改善程度有限,当信噪比增加到10 dB时,云层光学厚度为$\tau $=20.8时的误码率仅减小到1.1×10-5,当云层厚度为$\tau $=31.2时,误码率仍有5.6×10-2。因此不能单纯通过增加信噪比来减小误码率,对发送端的传输速率自适应技术和接收端的信道均衡技术均很有研究意义。

    当传输速率为5 Mbps时,云层的光学厚度不同时,信噪比与误码率之间的关系如图 9

    RBER=0.25χerfc(χ+C(t0)/22σn)fχ(χ)dχ
    fχ=12δ(χ)+12δ[χzc(t0+TS)]
    χ={zc(t0+TS)sk1=10sk1=0,

    根据文献[],采用OOK调制,且发送“1”与“0”概率相等时,系统的平均误码率为

    Figure 8. Waveform diagram of intersymbol interference
    Full-Size Img PowerPoint

    Waveform diagram of intersymbol interference

    本文主要从能量衰减及时间扩展角度研究不同类型的云及云层厚度对蓝绿激光通信性能的影响。得到结论:云层主要影响链路余量、最大通信速率和误码率,对信噪比的影响很小。卷云对通信性能几乎无影响;积云对通信性能的影响次之;其次是层云、层积云和积雨云,且三种云的差异很小,可不作区分;高层云和雨层云对通信性能影响较大,其中雨层云的影响更大。

    从链路余量角度看,云层的影响占主导地位,一方面云层影响了天气的阴晴,从而影响了云层下气溶胶的衰减系数,导致链路余量下降;另一方面云层的厚度也直接导致了激光能量的衰减,且影响较大。但对链路余量大于20 dB的系统来说,云的存在不会使通信中断。

    从信噪比角度看,湍流的影响仍然占主导地位,云层厚度只是使通信性能略微降低。中湍流时信噪比在5.63 dB~5.68 dB之间,弱湍流时信噪比在6.74 dB~6.82 dB之间,与无云时基本一致。

    从误码率角度看,由于云层限制了最大通信速率,因此当通信速率超过最大值时会造成码间串扰,增加了误码率,造成通信质量下降。改善方法有发送端速率自适应和接收端信道均衡,有待于进一步研究。

    从最大通信速率角度看,脉冲通过云层时由于多径效应造成时间扩展,当通信速率过大时会造成码间串扰,因此会限制最大通信速率。云层厚度4000 m时,雨层云与高层云的最大传输速率小于104 bps,积云、层云、层积云和积雨云略大于104 bps,-25 ℃卷云为2×105 bps,-50 ℃卷云为1.3×106 bps。

  • References

    Bucher E A. Computer simulation of light pulse propagation for communication through thick clouds[J]. Applied Optics, 1973, 12(10): 2391–2400.

    DOI: 10.1364/AO.12.002391

    CrossRef Google Scholar

    Mooradian G C, Geller M. Temporal and angular spreading of blue-green pulses in clouds[J]. Applied Optics, 1982, 21(9): 1572–1577.

    DOI: 10.1364/AO.21.001572

    CrossRef Google Scholar

    狄凌峰, 王沛, 鲁拥华, 等.近地大气532 nm激光散射的实验与计算[J].量子电子学报, 2005, 22(6): 960–964.

    DOI: 10.3969/j.issn.1007-5461.2005.06.026

    Di L F, Wang P, Lu Y H, et al. Experiment and calculation of 532nm laser scattering in the near ground atmosphere[J]. Chinese Journal of Quantum Electronics, 2005, 22(6): 960–964.

    DOI: 10.3969/j.issn.1007-5461.2005.06.026

    CrossRef Google Scholar

    Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831–844.

    DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

    CrossRef Google Scholar

    胡秀寒, 周田华, 朱小磊, 等.云对激光下行传输影响的仿真研究[J].红外, 2015, 36(2): 8–12.

    DOI: 10.3969/j.issn.1672-8785.2015.02.002

    Hu X H, Zhou T H, Zhu X L, et al. Simulation of downward laser pulse propagation through clouds[J]. Infrared, 2015, 36(2): 8–12.

    DOI: 10.3969/j.issn.1672-8785.2015.02.002

    CrossRef Google Scholar

    Arnon S, Sadot D, Kopeika N S. Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication[J]. Journal of Modern Optics, 1994, 41(8): 1591–1605.

    DOI: 10.1080/09500349414552431

    CrossRef Google Scholar

    View full references list
  • Cited by

    Periodical cited type(7)

    1. 孙灿,王豫,刘晓英,张洪玮,戴光耀,张芯瑜,王琪超,周伟,吴松华. 不同云雾和降水条件下相干多普勒测风激光雷达探测性能分析. 大气与环境光学学报. 2025(03): 312-324 .
    2. 甘霖,张合. 基于自适应滤波机理的脉冲激光近程探测云雾干扰滤波方法. 中国激光. 2022(07): 40-48 .
    3. 张盛楠,杨书华,傅军栋. 基于遍历微元法的可见光移动通信链路损耗动态预测方法. 激光杂志. 2022(09): 164-168 .
    4. 张海燕,唐学明,杨洪涛. 电磁干扰环境下无人机激光雷达的通信性能研究. 激光杂志. 2022(09): 139-143 .
    5. 刘锡国,刘敏,毛忠阳,胡昊,徐建武,王红波. 无线激光通信在海上大型无人机中的应用. 光通信研究. 2021(03): 59-63 .
    6. 刘伟,刘宇,王柏娜,崔洪升,杨蕊. 未知环境下激光通信数据传输质量的数据挖掘研究. 激光杂志. 2021(08): 104-107 .
    7. 朱晓程,张文睿,苏兆莹,陈祥,陈安和,幺周石,张学娇. 空基激光终端动态组网研究. 空间电子技术. 2021(03): 7-12 .

    Other cited types(3)

  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2020.190389
    Cite this Article
    Li Songlang, Mao Zhongyang, Liu Chuanhui, Liu Min. Analysis of the effect of cloud thickness on the performance of blue-green laser communication. Opto-Electronic Engineering 47, 190389 (2020). DOI: 10.12086/oee.2020.190389
    Download Citation
    Article History
    • Received Date July 07, 2019
    • Revised Date October 20, 2019
    • Published Date February 29, 2020
    Article Metrics
    Article Views(7957) PDF Downloads(3868)
    Share:
  • Related Articles

  • 云层类型 积云 层云 层积云 积雨云 雨层云 高层云 -25℃卷云 -50℃卷云
    衰减系数/m-1 0.0539 0.0418 0.045 0.044 0.128 0.108 0.000662 0.000072
    View in article Downloads
  • 系数 τ=20.8 τ=23.4 τ=26 τ=28.6 τ=31.2
    k1 120.1 34.1 12.4 5.1 2.4
    k2 1.9×107 1.9×107 1.1×107 0.8×107 0.7×107
    k3 1.55 1.6 0.66 0.28 0.19
    k4 3×106 3×106 2.4×106 1.8×106 1.6×106
    View in article Downloads

Bucher E A. Computer simulation of light pulse propagation for communication through thick clouds[J]. Applied Optics, 1973, 12(10): 2391–2400.

DOI: 10.1364/AO.12.002391

CrossRef Google Scholar

Mooradian G C, Geller M. Temporal and angular spreading of blue-green pulses in clouds[J]. Applied Optics, 1982, 21(9): 1572–1577.

DOI: 10.1364/AO.21.001572

CrossRef Google Scholar

狄凌峰, 王沛, 鲁拥华, 等.近地大气532 nm激光散射的实验与计算[J].量子电子学报, 2005, 22(6): 960–964.

DOI: 10.3969/j.issn.1007-5461.2005.06.026

Di L F, Wang P, Lu Y H, et al. Experiment and calculation of 532nm laser scattering in the near ground atmosphere[J]. Chinese Journal of Quantum Electronics, 2005, 22(6): 960–964.

DOI: 10.3969/j.issn.1007-5461.2005.06.026

CrossRef Google Scholar

Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831–844.

DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

CrossRef Google Scholar

胡秀寒, 周田华, 朱小磊, 等.云对激光下行传输影响的仿真研究[J].红外, 2015, 36(2): 8–12.

DOI: 10.3969/j.issn.1672-8785.2015.02.002

Hu X H, Zhou T H, Zhu X L, et al. Simulation of downward laser pulse propagation through clouds[J]. Infrared, 2015, 36(2): 8–12.

DOI: 10.3969/j.issn.1672-8785.2015.02.002

CrossRef Google Scholar

Arnon S, Sadot D, Kopeika N S. Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication[J]. Journal of Modern Optics, 1994, 41(8): 1591–1605.

DOI: 10.1080/09500349414552431

CrossRef Google Scholar

Arnon S, Kopeika N S. Adaptive optical transmitter and receiver for space communication through thin clouds[J]. Applied Optics, 1997, 36(9): 1987–1993.

DOI: 10.1364/AO.36.001987

CrossRef Google Scholar

刘建斌, 李海.基于Mie理论的四种典型水云的光散射计算[J].广西大学学报(自然科学版), 2009, 34(6): 863–867.

DOI: 10.3969/j.issn.1001-7445.2009.06.030

Liu J B, Li H. Calculation of light scattering on water cloud particles by using Mie's theory[J]. Journal of Guangxi University (Natural Science Edition), 2009, 34(6): 863–867.

DOI: 10.3969/j.issn.1001-7445.2009.06.030

CrossRef Google Scholar

陈纯毅, 杨华民, 姜会林, 等.云层信道光通信链路误码率及性能改善途径分析[J].系统仿真学报, 2009, 21(5): 1245–1248.

http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200905007

Chen C Y, Yang H M, Jiang H L, et al. Analysis of bit-error-rate and performance enhancement ways for optical communication link through cloud channel[J]. Journal of System Simulation, 2009, 21(5): 1245–1248.

http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200905007

Google Scholar

柯熙政, 席晓莉.无线激光通信概论[M].北京:北京邮电大学出版社, 2004.

Ke X Z, Xi X L. Introduction to Wireless Laser Communication[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2004.

Google Scholar

杨虹, 杨小丽.激光在云层信道中传输的蒙特卡罗模拟[J].激光杂志, 2008, 29(2): 44–46.

DOI: 10.3969/j.issn.0253-2743.2008.02.019

Yang H, Yang X L. Monte carlo simulation of light pulse propagation through clouds[J]. Laser Journal, 2008, 29(2): 44–46.

DOI: 10.3969/j.issn.0253-2743.2008.02.019

CrossRef Google Scholar

柯善勇.空间激光通信中的信道建模研究[D].武汉: 华中科技大学, 2007.

Ke S Y. A thesis submitted in fully fulfillment of the requirement for the degree of master of engineering[D]. Wuhan: Huazhong University of Science and Technology, 2007.

Google Scholar

Winker D M, Poole L R. Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS[J]. Applied Physics B, 1995, 60(4): 341–344.

DOI: 10.1007/BF01082269

CrossRef Google Scholar

李景镇.光学手册[M].西安:陕西科学技术出版社, 1986: 859–862.

Li J Z. Optical Manual[M]. Xi'an: Shaanxi Science and Technology Press, 1986: 859–862.

Google Scholar

刘敏, 刘锡国, 牟京燕, 等.无线光通信光功率衰减模型分析[J].红外与激光工程, 2012, 41(8): 2136–2140.

DOI: 10.3969/j.issn.1007-2276.2012.08.032

Liu M, Liu X G, Mou J Y, et al. Analysis of power attenuation model for wireless optical communication[J]. Infrared and Laser Engineering, 2012, 41(8): 2136–2140.

DOI: 10.3969/j.issn.1007-2276.2012.08.032

CrossRef Google Scholar

李玉权, 朱勇, 王江平.光通信原理与技术[M].北京:科学出版社, 2006: 321–323.

Li Y Q, Zhu Y, Wang J P. Principle and technology of optical communication[M]. Beijing: Science Press, 2006: 321–323.

Google Scholar

Stotts L B. Closed form expression for optical pulse broadening in multiple-scattering media[J]. Applied Optics, 1978, 17(4): 504–505.

DOI: 10.1364/AO.17.000504

CrossRef Google Scholar

Lee S, Hamzeh B, Kavehrad M. Airborne laser communications and performance enhancement by equalization[C]//Lasers & Applications in Science & Engineering. San Jose, California, United States: SPIE, 2006.

Google Scholar

Related Articles
Show full outline

Catalog

    Liu Min

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Analysis of the effect of cloud thickness on the performance of blue-green laser communication
    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    Analysis of the effect of cloud thickness on the performance of blue-green laser communication
    • 云层类型 积云 层云 层积云 积雨云 雨层云 高层云 -25℃卷云 -50℃卷云
      衰减系数/m-1 0.0539 0.0418 0.045 0.044 0.128 0.108 0.000662 0.000072
    • 系数 τ=20.8 τ=23.4 τ=26 τ=28.6 τ=31.2
      k1 120.1 34.1 12.4 5.1 2.4
      k2 1.9×107 1.9×107 1.1×107 0.8×107 0.7×107
      k3 1.55 1.6 0.66 0.28 0.19
      k4 3×106 3×106 2.4×106 1.8×106 1.6×106
    • Table  1

      Attenuation coefficients of different types of clouds

        1/2
    • Table  2

      Fitting result of double Gamma function

        2/2