Measurement of polarization correlation coefficients of light source and spectrometer in spectroscopic ellipsometry
  • Abstract

    Spectroscopic ellipsometry has been widely used in materials science, microelectronics, physical chemistry and biomedicine. In the spectroscopic ellipsometry system, the degree of polarization of the light source subsystem and the polarization sensitivity of the spectrometer subsystem will affect the measurement accuracy of the spectroscopic ellipsometry considering the leakage of polarizer and analyzer. To remove this systematic error, we included the degree of polarization of light from source and the polarization sensitivity of the spectroscopic ellipsometry in our calibration model; a method for measuring the polarization state of light source subsystem and polarization sensitivity of a spectrometer subsystem is proposed. To verify the method, we present the measurement setup and results for a commercial broadband light source and broadband spectrometer.

    Keywords

  • 光源的偏振状态可借助于已知偏振敏感性的偏振光谱仪测量得到[],光谱仪的偏振敏感性可借助于已知偏振状态的光源测量得到[]。然而这些测量方法都须借助于额外的已知偏振相关系数的光源或偏振光谱仪,为此本文设计了一种互测方案,即同时测定光源和光谱仪的偏振相关系数而无须借助于额外的已知偏振相关系数的光源或偏振光谱仪的方法,并搭建了测量系统对现有实验室内双旋转补偿器光谱椭偏测量系统中的光源子系统和光谱仪子系统的偏振相关系数进行了测定。

    光谱椭偏测量技术具有非损伤、无干扰、速度快和精准度高等优点,已广泛应用于薄膜参数检测[]、集成电路(IC)制造[]、各向异性材料检测[-]和生物材料特性研究[]等领域。随着光谱椭偏测量技术应用需求的扩大和应用领域的拓展,光谱椭偏测量技术的精度要求也越来越高。光谱椭偏测量是一种间接测量技术,它是基于测量系统模型来分析探测信号的计量技术,因此对于特定的光谱椭偏测量系统,提高测量精度的关键在于建立精确的系统模型及精确的系统参数标定方法。目前,众多研究者在理想的光谱椭偏测量系统模型[]上做了一定的误差修正,很大程度上提高了系统模型的精准性,包括考虑偏振器的旋光性、漏光和应力双折射因素后的修正模型[],波片补偿器的修正模型[],系统有限数值孔径和光谱仪有限带宽引起的退偏修正模型[],聚焦透镜旋光性和应力双折射因素后的修正模型[]等。而这些修正模型都未考虑光源的偏振度和光谱仪的偏振敏感度的影响,即光源和光谱仪偏振特性对测量精度的影响。虽然光源的偏振度和光谱仪的偏振敏感度在系统设计时已经给予了相当的考虑,但是为进一步提高系统的精准性,我们在系统模型中考虑了光源和光谱仪偏振相关性对测量精度的影响,并测定光源和光谱仪的偏振相关系数。

    RR(α)=[10000cos2αsin2α00sin2αcos2α00001],
    MMi=[1/21/2Im(χi)Re(χi)αi1/21/2Im(χi)Re(χi)αiIm(χi)Im(χi)Re(γi)Im(γi)Re(χi)αiRe(χi)αiIm(γi)Re(γi)]
    MMPRR(θ)SSin=12P0(1+P1cos2θ+P2sin2θ)[1,1,0,0]=PS[1,1,0,0]
    I=I0(1,A1,A2,A3)RR(β)MMARR(β)RR(ω2tC2)MMC2(δ2)RR(ω2t+C2)MMSRR(ω1tC1)MMC1(δ1)RR(ω1t+C1)RR(θ)MMPRR(θ)SSin,
    ηP2=Re(χP)+αP,
    ηA2=Re(χA)+αA,
    kP2=P1sin2θ+P2cos2θ

    可将I0ASPS作为整体的光强修正系数,因此(P1P2P3A1A2A3)不对样品信息MS进行调制,MS的求解[]与(P1P2P3A1A2A3)的值无关。所以在偏振片为理想的情况下,光源子系统和光谱仪子系统的偏振相关系数与样品MS的求解无关,无须进行偏振相关系数的测量修正。这从物理上容易理解,理想的偏振片作为偏振态的投影器件,将光源和光谱仪的偏振特性与样品的偏振特性完全分离。在椭偏仪的设计和制造中利用这一特性,尽量使用高性能的偏振片以保证仪器的精确度。然而,实际情况中,由于偏振片在一定程度上难免存在漏光、旋光和应力双折射等瑕疵,从而MPMA的表达式变成为[, ]

    将方程(3)代入方程(1)可得:

    [1,A1,A2,A3]RR(β)MMA=[1,A1,A2,A3][10000cos2βsin2β00sin2βcos2β00001][1/21/2Im(χA)ηA11/21/2Im(χA)ηA1Im(χA)Im(χA)Re(γA)Im(γA)ηA2ηA2Im(γA)Re(γA)]=IA[112Im(χA)k1+2Re(γA)k2+2Im(γA)A3k1+2Im(χA)k22ηA2A32ηA1k12Im(γA)k2+2Re(γA)A3k1+2Im(χA)k22ηA2A3]=IA[1,1,Y2,Y3],
    MMP=MMA=12[1100110000000000]
    MMPRR(θ)SSin=P0[1/21/2Im(χP)ηP11/21/2Im(χP)ηP1Im(χP)Im(χP)Re(γP)Im(γP)ηP2ηP2Im(γP)Re(γP)][10000cos2θsin2θ00sin2θcos2θ00001][1P1P2P3]=IP[112Im(χP)kP1+2Re(γP)kP22Im(γP)P3kP12Im(χP)kP2+2ηP1P32ηP2kP1+2Im(γP)kP2+2Re(γP)P3kP12Im(χP)kP2+2ηP1P3]=IP[11X2X3]
    I=I0IPIA[1,1,Y2,Y3]RR(β)RR(ω2tC2)MMC2(δ2)RR(ω2t+C2)MMSRR(ω1tC1)MMC1(δ1)RR(ω1t+C1)RR(θ)[1,1,X2,X3]
    ηA1=Re(χA)αA,
    [1,A1,A2,A3]RR(β)MMA=12(1+A1cos2β+A2sin2β)[1,1,0,0]=AS[1,1,0,0],
    ηP1=Re(χP)αP,

    将方程(6a)和(6b)代入方程(1)可得:

    Figure 1. Structural schematic diagram of spectroscopic ellipsometry measurement system
    Full-Size Img PowerPoint

    Structural schematic diagram of spectroscopic ellipsometry measurement system

    光谱椭偏测量系统由光源子系统(包括宽光谱光源和准直系统)、偏振态发生子系统(polarization state generator,PSG)、聚焦系统、样品、准直系统、偏振态分析子系统(polarization state analyzer,PSA)以及光谱仪子系统(包括聚焦系统、光谱仪和探测器)组成。根据PSG和PSA的组成元件和旋转元件的不同,光谱椭偏测量系统可分为相位调制型和机械旋转型,而机械旋转型光谱椭偏测量系统可大致分为旋转起偏器光谱椭偏仪(rotating polarizer ellipsometry,RPE)、旋转检偏器光谱椭偏仪(rotating analyzer ellipsometry,RAE)、单旋转补偿器光谱椭偏仪(rotating compensator ellipsometry,RCE)和双旋转补偿器光谱椭偏仪(dual rotating compensators ellipsometry,RC2)四类。下面以结构最为复杂的RC2为例介绍光谱椭偏测量系统的测量原理。其中光源子系统中的准直系统将宽光谱光源变成平行光后垂直入射到PSG;RC2的PSG由一个起偏器P和一个旋转补偿器C1依次组成,将准直后的平行光调制成随时间变化的特殊偏振状态;再由聚焦系统聚焦到样品,经样品反射后通过PSA侧的准直系统形成携带样品信息的平行光,并垂直入射到PSA中;RC2的PSA由一个旋转补偿器C2和一个检偏器A依次组成,用于检测准直后的平行光的偏振态,从而得到样品的反射特性;PSA出射的平行光再经聚焦系统聚焦进入光谱仪分光,最后由探测器测得光强。在不考虑退偏因素[]的情况下,用斯托克斯矢量描述偏振光束,用穆勒矩阵描述系统光学元件和样品对偏振状态的改变,那么探测器测得的光强可表示为[]

    其中:Sin为入射到PSG的光的斯托克斯矢量,可以表示为Sin=P0(1, P1, P2, P3)', P0为斯托克斯矢量的第一个分量,P1P2P3为光源子系统的偏振相关系数,表征入射到PSG的光的偏振态;R(α)为旋转矩阵,α为旋转角;θβC1C2分别为起偏器、检偏器、旋转补偿器C1和旋转补偿器C2的初始方位角;ω1ω2分别为旋转补偿器C1和旋转补偿器C2的旋转速度;δ1δ2分别为旋转补偿器C1和旋转补偿器C2的位相延迟函数;MPMAMC1MC2MS分别为起偏器、检偏器、旋转补偿器C1、旋转补偿器C2和样品的穆勒矩阵;A1A2A3为光谱仪子系统的偏振相关系数,表征光谱仪子系统的偏振灵敏度;I0为光强修正系数。R(α)和理想情况下的MPMA的表达式分别为[, ]

    kP1=1+P1cos2θ+P2sin2θ,
    I=I0ASPS[1,1,0,0]RR(β)RR(ω2tC2)MMC2(δ2)RR(ω2t+C2)MMSRR(ω1tC1)MMC1(δ1)RR(ω1t+C1)RR(θ)[1,1,0,0]

    那么方程(3)可以重写为

    其中:可以将I0IPIA作为整体的光强修正系数;(Y2Y3)和(X2X3)为偏振相关系数修正项,分别与(A1A2A3)和(P1P2P3)相关,并对样品信息MS进行调制,因此,MS的求解与(P1P2P3A1A2A3)的值相关。虽然αiχiγi都是在0.001的小量级,对应的偏振相关系数修正项(Y2Y3)和(X2X3)也同样是0.001量级,但是目前光谱椭偏仪的测量精度非常高,比如商用RC2椭偏仪测量空气样品穆勒矩阵元素的绝对精度可达0.002,与偏振相关系数修正项(Y2Y3)和(X2X3)处于同一量级,因此不能忽视偏振相关系数(P1P2P3A1A2A3)对测量结果的影响,为此须设计一种测量方法来测定这些偏振相关系数。

    k2=A1sin2β+A2cos2β

    其中:i=A,P;αiχiγi分别表示为偏振片的旋光度,应力双折射和漏光参数。为了书写方便,特设以下变量:

    k1=1+A1cos2β+A2sin2β,

    光谱椭圆偏振测量系统结构原理如图 1所示。

    那么有:

    结合方程(22b)和(22c)可得,

    SS(0)=12P0(1+P1)[1,1,0,0],
    I(δ,45)=AAC(δ)SS(45)=12P0C1(1+P2)(1+A2cosδA3sinδ),
    A2=I(45,0)I(135,0)I(45,0)+I(135,0),
    AA(90)=12A0(1A1)[1,1,0,0],
    I(45,0)=AA(45)SS(0)=14P0A0(1+P1)(1+A2),
    MMC=[1000010000cosδsinδ00sinδcosδ]
    SS(θ)=P0RR(θ)MMPRR(θ)[1,P1,P2,P3],

    同理,在光谱仪子系统前方加入方位角为β的偏振片A后,根据方程(1)和(2),整体的偏振相关可以表示为

    AA(β)=A0[1,A1,A2,A3]RR(β)MMARR(β)=12A0(1+A1cos2β+A2sin2β)[1,cos2β,sin2β,0],
    SSC(δ)=C0[1,P1,P2cosδ+P3sinδ,P2sinδ+P3cosδ]
    SS(135)=12P0(1P2)[1,0,1,0]
    I(δ,135)=AAC(δ)SS(135)=12P0C1(1P2)(1A2cosδ+A3sinδ),

    测量A3的装置组合如图 2(c)所示,光谱仪探测所得光强可表示为

    I(45,90)=AA(45)SS(90)=14P0A0(1P1)(1+A2),

    调节偏振片A的角度为45°,135°,测量两组光谱数据I(45°, δ), I(135°, δ),并将已测得的A2P2及已知的波片的位相延迟函数δ代入方程(21)即可求得P3

    同理,在光谱仪子系统前方加入方位角为0的波片后,整体的偏振相关可以表示为

    I(135°,δ)=AA(135°)SSC(δ)=12A0C0(1A2)(1P2cosδP3sinδ),
    I(β,θ)=AA(β)SS(θ)
    SS(45)=12P0(1+P2)[1,0,1,0],
    I(δ,θ)=AAC(δ)SS(θ),
    A3=I(δ,45)(1P2)(1A2cosδ)I(δ,45)(1P2)sinδ+I(δ,135)(1+P2)sinδ+I(δ,135)(1+P2)(1+A2cosδ)I(δ,45)(1P2)sinδ+I(δ,135)(1+P2)sinδ
    AA(45)=12A0(1+A2)[1,0,1,0],
    SS(90)=12P0(1P1)[1,1,0,0],
    I(β,δ)=AA(β)SSC(δ),
    P1=I(45,0)I(45,90)I(45,0)+I(45,90),
    AA(135)=12A0(1A2)[1,0,1,0]
    I(0,135)=AA(0)SS(135)=14P0A0(1P2)(1+A1)

    因此测量方程组(14)中的6组光谱数据并代入方程组(15)即可求解出(A1A2P1P2)的值。

    其中:A0为修正系数。考虑特殊角度β=0°,45°,90°,135°的情况:

    I(45°,δ)=AA(45°)SSC(δ)=12A0C0(1+A2)(1+P2cosδ+P3sinδ),

    考虑特殊角度θ=0°,45°,90°,135°的情况:

    其中P0为光源强度相关的常数修正系数。由于偏振相关系数的测量精度要求远比光谱椭偏仪的测量精度要求低,因此可以忽略0.001量级的偏振片瑕疵参数的影响,可当作理想偏振片处理。那么,将方程(2)中的MP代入方程(8)可得:

    P2=I(0,45)I(0,135)I(0,45)+I(0,135)

    其中:C0为修正系数,δ为波片的位相延迟函数与波长相关,MC(δ)为波片C的穆勒矩阵表达式为

    A1=I(0,45)I(90,45)I(0,45)+I(90,45),

    调节偏振片P的角度为45°,135°,测量两组光谱数据I(δ, 45°),I(δ, 135°),并将已测得的A2P2及已知的波片的位相延迟函数δ代入式(23),即可求得A3

    分析方程组(10)和(12)可知,在光源子系统后方加入方位角为θ的偏振片P,同时光谱仪子系统前方加入方位角为β的偏振片A后,通过调控θβ为特殊角度的组合可求解出(A1A2P1P2)的值。下面具体分析θβ的角度组合。两个偏振片的装置组合如图 2(a)所示,探测器探测所得光强可表示为

    AA(0)=12A0(1+A1)[1,1,0,0],
    AAC(δ)=C1[1,A1,A2,A3]RR(0)MMC(δ)RR(0)=C1[1,A1,A2cosδA3sinδ,A2sinδ+A3cosδ],

    将方程(17)代入方程(16)可得:

    由方程(14a)和(14b),(14c)和(14d),(14c)和(14e),(14a)和(14f)分别可得:

    其中:C1为修正系数。分析方程(18)和(19)可知,SC矢量的第三和第四个元素与P3相关,结合方程(12b)和(12d)可求解出P3AC矢量的第三和第四个元素与A3相关,结合方程(10b)和(10d)可求解出A3。因此,光源子系统后方加入方位角为0的波片,结合光谱仪子系统前方加入方位角为β的偏振片A的装置组合可测量P3;光谱仪子系统前方加入方位角为0的波片,结合光源子系统后方加入方位角为θ的偏振片P的装置组合可测量A3。下面给出了具体的求解方法。

    测量方案设计思路是在光源子系统和光谱仪子系统之间加入偏振片或偏振片与波片的组合。首先讨论加入偏振片的情况,光源子系统后方加入方位角为θ的偏振片P后,根据方程(1),从偏振片P出射的光的斯托克斯矢量可表示为

    测量P3的装置组合如图 2(b)所示,光谱仪探测所得光强可表示为

    I(90,45)=AA(90)SS(45)=14P0A0(1+P2)(1A1),

    结合方程(20b)和(20c)可得:

    联合方程组(10),(12)和方程(13),可得出:

    SS(θ)=12P0(1+P1cos2θ+P2sin2θ)[1,cos2θ,sin2θ,0]
    I(135,0)=AA(135)SS(0)=14P0A0(1+P1)(1A2),
    SSC=C0RR(0)MMC(δ)RR(0)[1,P1,P2,P3],
    P3=I(45,δ)(1A2)(1P2cosδ)I(45,δ)(1A2)sinδ+I(135,δ)(1+A2)sinδI(135,δ)(1+A2)(1+P2cosδ)I(45,δ)(1A2)sinδ+I(135,δ)(1+A2)sinδ

    分析方程(13)可知,无论怎么调节θβ的角度,I(β, θ)都与A3P3无关。因此,单纯的偏振片组合无法测量A3P3的值,须考虑波片与偏振片的组合。那么在光源子系统后方加入方位角为0的波片后,出射光斯托克斯矢量可表示为

    Figure 2. Schematic diagram of polarization correlation coefficients measurement setup for light source subsystem and spectrometer subsystem, where P, A are polarizers and C is a wave plate. (a) Schematic diagram of (A1, A2, P1, P2) measurement setup; (b) Schematic diagram of P3 measurement setup; (c) Schematic diagram of A3 measurement setup
    Full-Size Img PowerPoint

    Schematic diagram of polarization correlation coefficients measurement setup for light source subsystem and spectrometer subsystem, where P, A are polarizers and C is a wave plate. (a) Schematic diagram of (A1, A2, P1, P2) measurement setup; (b) Schematic diagram of P3 measurement setup; (c) Schematic diagram of A3 measurement setup

    光谱椭圆偏振测量系统中采用的光源为宽光谱光源,那么光源子系统的偏振相关系数测量须借助于光谱仪子系统。而光谱仪子系统具有一定的偏振灵敏度,也是偏振相关的,为此须设计一个能对光源子系统偏振相关系数和光谱仪子系统偏振相关系数同时进行互测的方案。

    I(0,45)=AA(0)SS(45)=14P0A0(1+P2)(1+A1),

    在测试得到偏振相关系数后,代入方程(6a)和(6b)即可得到对应的偏振相关系数修正模型表达式IA(1,1,Y2Y3)和IP(1,1,X2X3)',其中偏振相关系数修正项(X2X3)和(Y2Y3)分别与起偏器和检偏器的方位角、旋光度、应力双折射和漏光参数相关。进而将得到的偏振相关修正模型代入方程(1)得到光谱椭偏测量系统的系统模型;基于该系统模型,并通过光谱椭偏测量系统测量已知光学参数或者穆勒矩阵的样品,从而可实现起偏器和检偏器的参数以及系统中其它偏振元件参数的标定,即标准样品标定法[]标定系统偏振元件参数。因此,光源与光谱仪的偏振相关系数的测量为利用标准样品法对光谱椭偏系统中偏振元件的参数标定做了准备工作。

    结果表明,光源拥有相对较大的偏振度,425 nm~460 nm波段偏振度相关系数变化剧烈,注意到此波段为光源氘灯和卤素灯的合光波段,偏振度在这个波段的剧烈变化可能与合光分束片有关;而光谱仪的偏振相关系数在0.05以下,说明该光谱仪可能引入了消偏设计以降低对偏振的敏感度。

    光源型号为海洋光学DH-2000-BAL,为氘灯和卤素灯的混合光源,经光纤耦合出光,并用光纤夹持器固定光纤头,可近似作为点光源输出;再经90°离轴抛物面镜准直,并通过光阑限光以及滤光片(400 nm~800 nm)滤光,形成合适孔径大小且波段范围为400 nm~800 nm的平行光;这一部分作为光源子系统。光源子系统出射的平行光通过特定方位角的两个偏振器,再经耦合透镜聚焦进入光纤至光谱仪分光检测。耦合透镜和光谱仪的组合作为光谱仪子系统。旋转偏振器P和偏振器A的方位角组合分别为(0,45°),(0,135°),(45°,0°),(45°,90°),(90°,45°),(135°,0°),分别测量对应的光谱数据。每个角度组合采集50帧光谱数据以减小随机噪声的影响,每个角度组合重复测量多次取平均以减小码盘的机械旋转误差。将测量得到的6组光谱数据代入方程组(15)即可求解出(A1A2P1P2)的值。

    根据偏振相关系数的测量方案搭建了对应的测量平台,系统如图 3所示。

    Figure 4. Measurement results of polarization correlation coefficients of light source subsystem and spectrometer subsystem
    Full-Size Img PowerPoint

    Measurement results of polarization correlation coefficients of light source subsystem and spectrometer subsystem

    图 3中偏振器P用400 nm~800 nm的消色差波片替换并调至0度方位角,同时将偏振器A的方位角分别调至45°和135°,测量得到对应的光谱数据,将此光谱数据和已知的波片位相延迟数据代入方程(23)可求解出A3。将图 3中偏振器A用400 nm~800 nm的消色差波片替换并调至0度方位角,同时将偏振器P的方位角分别调至45°和135°,测量得到对应的光谱数据,将此光谱数据和已知的波片位相延迟数据代入方程(21)可求解出P3。最终的偏振相关系数测量结果如图 4所示。

    Figure 3. Experimental device for measuring polarization correlation coefficient of light source and spectrometer
    Full-Size Img PowerPoint

    Experimental device for measuring polarization correlation coefficient of light source and spectrometer

    光谱椭偏测量系统中,光源子系统的偏振度和光谱仪子系统的偏振敏感度会影响光谱椭偏系统的测量精度,因此在光谱仪椭偏测量系统建模时必须考虑光源子系统和光谱仪子系统的偏振相关性,并用系统模型对样品椭偏测量值进行修正。针对这一问题,本文建立了光谱椭偏测量系统的偏振相关系数的修正模型,并分析说明了该修正模型在高精度的光谱椭偏测量系统中是不可忽视的;提出了一种同时测量光源子系统和光谱仪子系统偏振相关系数的方法,利用现有实验室内的宽带光源系统和宽带光谱仪验证了这种测量方法的可行性。实验测量结果表明,光源子系统的偏振相关性系数较大,特别在425 nm~500 nm波段;而光谱仪子系统的偏振相关系数在整个研究波段范围内都在0.05以下。光源与光谱仪的偏振相关系数的测量为利用标准样品法对光谱椭偏系统中偏振元件的参数标定做了准备工作。

  • References

    周毅, 吴国松, 代伟, 等.椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度[J].物理学报, 2010, 59(4): 2356–2363.

    http://d.old.wanfangdata.com.cn/Periodical/wlxb201004030

    Zhou Y, Wu G S, Dai W, et al. Accurate determination of optical constants and thickness of absorbing thin films by a combined ellipsometry and spectrophotometry approach[J]. Acta Physica Sinica, 2010, 59(4): 2356–2363.

    http://d.old.wanfangdata.com.cn/Periodical/wlxb201004030

    Google Scholar

    宋国志.宽光谱椭偏仪在集成电路中的研究与应用[D].成都: 电子科技大学, 2014.

    Song G Z. Broadband Spectroscopy Ellipsometry and its application & research in Integrated Circuits[D]. Chengdu: University of Electronic Science and Technology of China, 2014.

    Google Scholar

    Chen C, An I, Collins R W. Multichannel Mueller matrix ellipsometry for simultaneous real-time measurement of bulk isotropic and surface anisotropic complex dielectric functions of semiconductors[J]. Physical Review Letters, 2003, 90(21): 217402.

    DOI: 10.1103/PhysRevLett.90.217402

    CrossRef Google Scholar

    Berrier A, Gompf B, Fu L W, et al. Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy[J]. Physical Review B, 2014, 89(19): 195434.

    DOI: 10.1103/PhysRevB.89.195434

    CrossRef Google Scholar

    Arwin H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589–2592.

    DOI: 10.1016/j.tsf.2010.11.082

    CrossRef Google Scholar

    Fujiwara H. Spectroscopic Ellipsometry: Principles and Applications[M]. Hoboken: Wiley, 2007.

    Google Scholar

    View full references list
  • Cited by

    Periodical cited type(3)

    1. 郭庭,张彬,顾乃庭,饶长辉,黄林海,许多,肖亚维. 偏振哈特曼波前探测技术研究. 光电工程. 2021(07): 56-65 . 本站查看
    2. 苗政委,汤媛媛,魏凯,张雨东. DRC-MME高级参数模型直通标定实验的自由度分析. 光学学报. 2021(20): 72-81 .
    3. 苗政委,汤媛媛,魏凯,张雨东. DRC-MME直通标定随机误差估计及最优配置分析. 光学学报. 2021(24): 128-138 .

    Other cited types(6)

  • Author Information

    • Fan Zhentao, 18394092730@163.com On this SiteOn Google Scholar
      • Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
      • Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
      • University of Chinese Academy of Sciences, Beijing 100049, China
    • Corresponding author: Tang Yuanyuan, yytang001@126.com On this SiteOn Google Scholar

      Tang Yuanyuan, E-mail: yytang001@126.com

      • Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
      • Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
    • Wei Kai On this SiteOn Google Scholar
      • Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
      • Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
    • Chen Ying On this SiteOn Google Scholar
      • 61046 Army of the Chinese People's Liberation Army, Beijing 100000, China
    • Zhang Yudong On this SiteOn Google Scholar
      • Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
      • Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2019.180507
    Cite this Article
    Fan Zhentao, Tang Yuanyuan, Wei Kai, Chen Ying, Zhang Yudong. Measurement of polarization correlation coefficients of light source and spectrometer in spectroscopic ellipsometry. Opto-Electronic Engineering 46, 180507 (2019). DOI: 10.12086/oee.2019.180507
    Download Citation
    Article History
    • Received Date September 27, 2018
    • Revised Date January 15, 2019
    • Published Date November 30, 2019
    Article Metrics
    Article Views(11308) PDF Downloads(3368)
    Share:
  • Related Articles

周毅, 吴国松, 代伟, 等.椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度[J].物理学报, 2010, 59(4): 2356–2363.

http://d.old.wanfangdata.com.cn/Periodical/wlxb201004030

Zhou Y, Wu G S, Dai W, et al. Accurate determination of optical constants and thickness of absorbing thin films by a combined ellipsometry and spectrophotometry approach[J]. Acta Physica Sinica, 2010, 59(4): 2356–2363.

http://d.old.wanfangdata.com.cn/Periodical/wlxb201004030

Google Scholar

宋国志.宽光谱椭偏仪在集成电路中的研究与应用[D].成都: 电子科技大学, 2014.

Song G Z. Broadband Spectroscopy Ellipsometry and its application & research in Integrated Circuits[D]. Chengdu: University of Electronic Science and Technology of China, 2014.

Google Scholar

Chen C, An I, Collins R W. Multichannel Mueller matrix ellipsometry for simultaneous real-time measurement of bulk isotropic and surface anisotropic complex dielectric functions of semiconductors[J]. Physical Review Letters, 2003, 90(21): 217402.

DOI: 10.1103/PhysRevLett.90.217402

CrossRef Google Scholar

Berrier A, Gompf B, Fu L W, et al. Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy[J]. Physical Review B, 2014, 89(19): 195434.

DOI: 10.1103/PhysRevB.89.195434

CrossRef Google Scholar

Arwin H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589–2592.

DOI: 10.1016/j.tsf.2010.11.082

CrossRef Google Scholar

Fujiwara H. Spectroscopic Ellipsometry: Principles and Applications[M]. Hoboken: Wiley, 2007.

Google Scholar

Li S F. Jones-matrix analysis with Pauli matrices: application to ellipsometry[J]. Journal of the Optical Society of America A, 2000, 17(5): 920–926.

DOI: 10.1364/JOSAA.17.000920

CrossRef Google Scholar

Gu H G, Liu S Y, Chen X G, et al. Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry[J]. Applied Optics, 2015, 54(4): 684–693.

DOI: 10.1364/AO.54.000684

CrossRef Google Scholar

Li W Q, Zhang C W, Jiang H, et al. Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry[J]. Journal of Optics, 2016, 18(5): 055701.

DOI: 10.1088/2040-8978/18/5/055701

CrossRef Google Scholar

Fan Z T, Tang Y Y, Wei K, et al. Calibration of focusing lens artifacts in a dual rotating-compensator Mueller matrix ellipsometer[J]. Applied Optics, 2018, 57(15): 4145–4152.

DOI: 10.1364/AO.57.004145

CrossRef Google Scholar

李金金, 孙晓兵, 康晴, 等.偏振光谱仪偏振探测精度分析[J].红外与激光工程, 2018, 47(1): 0123002.

DOI: 10.3788/IRLA201847.0123002

Li J J, Sun X B, Kang Q, et al. Polarization detection accuracy analysis of spectropolarimeter[J]. Infrared and Laser Engineering, 2018, 47(1): 0123002.

DOI: 10.3788/IRLA201847.0123002

CrossRef Google Scholar

王宏博, 胡秀清, 张璐, 等.光栅色散型成像光谱仪的偏振校正方法研究[J].光学学报, 2016, 36(8): 0812004.

10.3788/AOS201636.0812004

Wang H B, Hu X Q, Zhang L, et al. Polarization correction for grating dispersive imaging spectrometer[J]. Acta Optica Sinica, 2016, 36(8): 0812004.

10.3788/AOS201636.0812004

Google Scholar

Collins R W, Koh J. Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films[J]. Journal of the Optical Society of America A, 1999, 16(8): 1997–2006.

DOI: 10.1364/JOSAA.16.001997

CrossRef Google Scholar

Lee J, Koh J, Collins R W. Dual rotating-compensator multichannel ellipsometer: Instrument development for high-speed Mueller matrix spectroscopy of surfaces and thin films[J]. Review of Scientific Instruments, 2001, 72(3): 1742–1754.

DOI: 10.1063/1.1347969

CrossRef Google Scholar

Hauge P S, Muller R H, Smith C G. Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry[J]. Surface Science, 1980, 96(1–3): 81–107.

DOI: 10.1016/0039-6028(80)90296-4

CrossRef Google Scholar

姚本溪, 饶长辉, 顾乃庭. 1.8 m太阳望远镜偏振标定单元设计[J].光电工程, 2018, 45(11): 180058.

DOI: 10.12086/oee.2018.180058

Yao B X, Rao C H, Gu N T. Polarization calibration unit design of 1.8 m Chinese large solar telescope[J]. Opto-Electronic Engineering, 2018, 45(11): 180058.

DOI: 10.12086/oee.2018.180058

CrossRef Google Scholar

宋国志, 刘涛, 谌雅琴, 等.利用多个标准样品校准光谱椭圆偏振仪[J].光学学报, 2014, 34(3): 0312003.

DOI: 10.3788/AOS201434.0312003

Song G Z, Liu T, Chen Y Q, et al. Calibration of spectroscopic ellipsometer using multiple standard samples[J]. Acta Optica Sinica, 2014, 34(3): 0312003.

DOI: 10.3788/AOS201434.0312003

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Zhang Yudong

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Measurement of polarization correlation coefficients of light source and spectrometer in spectroscopic ellipsometry
    • Figure  1

      Structural schematic diagram of spectroscopic ellipsometry measurement system

    • Figure  2

      Schematic diagram of polarization correlation coefficients measurement setup for light source subsystem and spectrometer subsystem, where P, A are polarizers and C is a wave plate. (a) Schematic diagram of (A1, A2, P1, P2) measurement setup; (b) Schematic diagram of P3 measurement setup; (c) Schematic diagram of A3 measurement setup

    • Figure  3

      Experimental device for measuring polarization correlation coefficient of light source and spectrometer

    • Figure  4

      Measurement results of polarization correlation coefficients of light source subsystem and spectrometer subsystem

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4