The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal
-
摘要
为实现激光冲击强化在线检测,针对激光诱导等离子体声波现象,采用SIA-AEDAC-01型声发射数据采集卡采集声波信号,研究并设计了一种激光诱导等离子体声波信号实时采集分析软件系统。设计了该系统的可行性和准确性测试实验,首先用激光冲击强化在线检测系统采集传播在空气中的激光诱导等离子体声波信号,并从中提取等离子体声波信号能量;利用X射线应力分析仪测量试件强化后的残余应力以验证激光冲击强化实验的可靠性。实验结果表明,本文设计开发的软件系统能实时采集分析激光冲击强化过程中的等离子体声波信号,并能准确提取每一次冲击强化产生的声波信号能量;且随着激光冲击能量的增加,等离子体声波信号能量和试件表面残余压应力都增大,且二者曲线线型一致,说明该软件系统准确可靠,满足激光冲击强化在线检测的需求。
-
关键词:
- 激光冲击强化 /
- 激光诱导等离子体声波 /
- 在线检测 /
- 实时采集分析 /
- 软件系统
Abstract
In order to realize the online detection of laser shock processing and aim at the phenomenon of laser-induced plasma acoustic wave, the SIA-AEDAC-01 acoustic emission acquisition card is used to collect acoustic wave signals. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal is studied and designed. The test experiment for feasibility and accuracy of the system is designed. Firstly, the laser-induced plasma acoustic wave signal propagating in air is collected by the online detection laser shock processing system, and then the system gets the laser-induced plasma acoustic wave signal energy. The residual stress of the test pieces after the treatment of laser shock processing was measured by an X-ray stress analyzer to verify the reliability. The experimental results show that the laser-induced plasma acoustic wave signal can be collected and analyzed in real-time by the real-time acquisition and analysis software system, which is designed and developed in this work, and the software system can accurately get the acoustic signal energy. At the same time, both the acoustic wave signal energy and the surface residual stress of the test pieces are increased with the laser energy, and their change curve is consistent. In conclusion, the real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal can satisfy the requirements of online detection of laser shock processing with accurate and reliable performance, and meet the online monitoring requirements of laser shock processing.
-
Overview
Overview:Laser shock processing (LSP) is an innovative surface treatment technique. It involves irradiation of the thin opaque coating layer with high-energy short-width laser pulses causing instantaneous vaporization of the surface layer into high-temperature high-pressure laser-induced plasma. The expansion of the laser-induced plasma generates high speed compressive shock waves that propagate into the components. Then the metal material is plastically deformed and generates compressive residual stress in the surface. The surface residual compressive stress is generally used to evaluate the effect of the process of LSP. The main methods of measuring surface residual compressive stress are off-line and low efficiency. It is necessary to develop the non-destructive online detection technology of LSP. The correlation analysis showed the laser-induced plasma acoustic waves can comprehensively reflect the parameter characteristics in the process of LSP. The analysis and extraction of the characteristics of acoustic wave can be used for real-time online detection of the LSP. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal based on SIA-AEDAC-01 acoustic emission acquisition card is developed in this work to realize the online detection of LSP. Firstly, the laser-induced plasma acoustic wave signal propagating in air is collected and its energy is obtain by the software system. The residual stress of the test pieces after the treatment of LSP was measured by an X-ray stress analyzer to verify the reliability. The experimental results show that the laser-induced plasma acoustic wave signal can be collected and analyzed in real-time by the software system which can accurately get the acoustic signal energy. At the same time, both the acoustic wave signal energy and the surface residual stress of the test pieces are increased with the laser energy, and their change curve is consistent. In conclusion, the software system can satisfy the requirements of online detection of LSP with accurate and reliable performance.
-
-
表 1 SIA-AEDAC-01型声发射数据采集卡的主要技术参数
Table 1. The main technical parameters of SIA-AEDAC-01 acoustic emission data acquisition card
Technical parameter Value Data interface PCI-Express 100 Mb/s Sampling precision 24 bit Sampling rate Maximum 5 MS/s Bandwidth of signal frequency 1 Hz~400 kHz Filters Simulation/Digital Channel Double 表 2 激光器技术参数
Table 2. The technical parameters of laser
Parameters Value Operation material Nd:YAG Wavelength/nm 1064 Pulse energy/J 0~7 Working frequency/Hz Singal, 0.25, 0.5, 1, 2 Pulse width/ns 10~30 Energy distribution Gaussian distribution Spot shape Circle Spot diameter/mm 2~4 表 3 不同激光能量下对应的激光功率密度
Table 3. Laser power intensity of each associated laser energy
Laser energy/J Laser power intensity/(GW/cm2) 5 5.80 5.5 6.38 6 6.96 6.5 7.54 7 8.12 -
参考文献
[1] 吴嘉俊, 赵吉宾, 乔红超, 等.激光冲击强化技术的应用现状与发展[J].光电工程, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690
Wu J J, Zhao J B, Qiao H C, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690
[2] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-roduced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. doi: 10.1063/1.346783
[3] 李松夏, 乔红超, 赵吉宾, 等.激光冲击强化技术原理及研究发展[J].光电工程, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001
Li S X, Qiao H C, Zhao J B, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001
[4] 张恭轩, 吴嘉俊, 高宇, 等. TC17钛合金激光冲击强化实验研究[J].表面技术, 2018, 47(3): 96-100. http://d.old.wanfangdata.com.cn/Periodical/bmjs201803016
Zhang G X, Wu J J, Gao Y, et al. Experimental study on laser shock peening of TC17 titanium alloy[J]. Surface Technology, 2018, 47(3): 96-100. http://d.old.wanfangdata.com.cn/Periodical/bmjs201803016
[5] 李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013.
Li Y H. Theory and Technology of Laser Shock Processing[M]. Beijing: Science Press of China, 2013.
[6] 张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展, 2007, 44(3): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703012
Zhang Y K. The key issue and application prospect of laser shock processing industrialization[J]. Laser & Optoelectronics Progress, 2007, 44(3): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703012
[7] Wu J J, Zhao J B, Qiao H C, et al. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 2018, 1(9): 180016. doi: 10.29026/oea.2018.180016
[8] 马泽祥, 郭兴旺.航空发动机叶片激光冲击强化质量的评估方法[J].无损检测, 2015, 37(10): 81-86. doi: 10.11973/wsjc201510019
Ma Z X, Guo X W. Methods of monitoring laser shock peening for aviation engine blade[J]. Nondestructive Testing, 2015, 37(10): 81-86. doi: 10.11973/wsjc201510019
[9] Takata T, Enoki M, Chivavibul P, et al. Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave[J]. Materials Transactions, 2016, 57(5): 674-680. doi: 10.2320/matertrans.M2015401
[10] 李未龙, 余立, 汪选国.小孔法测量残余应力[J].武钢技术, 2013, 51(6): 55-59. doi: 10.3969/j.issn.1008-4371.2013.06.017
Li W L, Yu L, Wang X G. Test of residual stress by hole drilling strain method[J]. Wisco Technology, 2013, 51(6): 55-59. doi: 10.3969/j.issn.1008-4371.2013.06.017
[11] 陈怀宁, 唐延东.小孔法测量残余应力的应力—应变有限元分析[J].机械强度, 1993, 15(3): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb200503037
Chen H N, Tang Y D. Fem analysis of stress-strain for measuring residual stresses with blind-hole method[J]. Journal of Mechanical Strength, 1993, 15(3): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb200503037
[12] 张定铨. X射线应力测定基本知识第一讲残余应力的基本概念[J].理化检验-物理分册, 2007, 43(4): 211-213. doi: 10.3969/j.issn.1001-4012.2007.04.016
Zhang D Q. Basic knowledge of stress determination by x-ray—lecture No.1 basic concept of residual stress[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(4): 211-213. doi: 10.3969/j.issn.1001-4012.2007.04.016
[13] 张定铨.残余应力测定的基本知识第二讲X射线应力测定的基本原理[J].理化检验-物理分册, 2007, 43(5): 263-265. doi: 10.3969/j.issn.1001-4012.2007.05.014
Zhang D Q. Basic knowledge of residual stress determination-lecture No. 2 basic concept of stress determination by X-ray[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(5): 263-265. doi: 10.3969/j.issn.1001-4012.2007.05.014
[14] 杨建风, 周建忠, 冯爱新.激光冲击强化效果的无损检测[J].机床与液压, 2007, 35(5): 160-162. doi: 10.3969/j.issn.1001-3881.2007.05.057
Yang J F, Zhou J Z, Feng A X. Non-destructive detection of the effect of laser shock processing[J]. Machine Tool & Hydraulics, 2007, 35(5): 160-162. doi: 10.3969/j.issn.1001-3881.2007.05.057
[15] 邹世坤, 曹子文, 杨贺来.激光冲击处理发动机叶片的固有频率测试[J].中国机械工程, 2010, 21(6): 648-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201006005
Zou S K, Cao Z W, Yang H L. Natural frequency test of turbine blades in laser shock processing[J]. China Mechanical Engineering, 2010, 21(6): 648-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201006005
[16] Zhao R, Xu R Q, Shen Z H, et al. Dynamics of laser-induced shock wave by optical probe in air[J]. Optik, 2006, 117(7): 299-302. doi: 10.1016/j.ijleo.2005.09.005
[17] Aguilera J A, Aragón C. Characterization of laser-induced plasma during its expansion in air by optical emission spectroscopy: observation of strong explosion self-similar behavior[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 97: 86-93. doi: 10.1016/j.sab.2014.04.013
[18] 卞保民, 陈建平, 杨玲, 等.空气中激光等离子体冲击波的传输特性研究[J].物理学报, 2000, 49(3): 445-448. doi: 10.3321/j.issn:1000-3290.2000.03.012
Bian B M, Chen J P, Yang L, et al. The transmission characteristic of airborne laser plasma shock Wave[J]. Acta Physica Sinica, 2000, 49(3): 445-448. doi: 10.3321/j.issn:1000-3290.2000.03.012
[19] 卞保民, 杨玲, 陈笑, 等.激光等离子体及点爆炸空气冲击波波前运动方程的研究[J].物理学报, 2002, 51(4): 809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019
Bian B M, Yang L, Chen X, et al. Study of the laser-induced plasmas and the kinematics of shock waves in air by a way intense explosion[J]. Acta Physica Sinica, 2002, 51(4): 809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019
[20] Michael D B, David M R, Won S U, et al. Real time laser shock peening quality assurance by natural frequency analysis: 6914215[P]. 2005-07-05.
[21] 梁建民, 杨贺来, 邹世坤.叶片激光冲击强化处理的过程监测[J].新技术新工艺, 2008(2): 82-84. doi: 10.3969/j.issn.1003-5311.2008.02.030
Liang J M, Yang H L, Zou S K. The processing monitor for aero-engine blades' laser shock processing[J]. New Technology & New Process, 2008(2): 82-84. doi: 10.3969/j.issn.1003-5311.2008.02.030
[22] 杨贺来, 梁建民.叶片激光冲击强化处理质量检测技术研究[J].天津城市建设学院学报, 2010, 16(1): 37-40. doi: 10.3969/j.issn.1006-6853.2010.01.010
Yang H L, Liang J M. Research on the quality inspection for blades' laser shock processing[J]. Journal of Tianjin Institute of Urban Construction, 2010, 16(1): 37-40. doi: 10.3969/j.issn.1006-6853.2010.01.010
[23] 吴边, 王声波, 郭大浩, 等.强激光冲击铝合金改性处理研究[J].光学学报, 2005, 25(10): 1352-1356. doi: 10.3321/j.issn:0253-2239.2005.10.012
Wu B, Wang S B, Guo D H, et al. Research of material modification induced by laser shock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10): 1352-1356. doi: 10.3321/j.issn:0253-2239.2005.10.012
[24] 王飞.基于空气中冲击波辐值和飞行时间的激光冲击强化在线检测试验研究[D].镇江: 江苏大学, 2010.
Wang F. Experimental studies on quality assurance of laser shock processing by the amplitude and time-of-flight of the shock wave in air[D]. Zhenjiang: Jiangsu University, 2010.
[25] 邱辰霖, 程礼, 何卫锋.一种基于数据间相关性的激光喷丸声学监测技术[J]. 振动与冲击, 2017, 36(4): 139-143. http://d.old.wanfangdata.com.cn/Periodical/zdycj201704022
Qiu C L, Cheng L, He W F. A condition monitoring method for laser peening based on the correlation between the adjacent aata[J]. Journal of Vibration and Shock, 2017, 36(4): 139-143. http://d.old.wanfangdata.com.cn/Periodical/zdycj201704022
[26] 乔红超, 赵吉宾.激光冲击强化在线检测系统设计及应用[J].激光与光电子学进展, 2013, 50(7): 071401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201307008
Qiao H C, Zhao J B. Design and implementation of online laser peening detection system[J]. Laser & Optoelectronics Progress, 2013, 50(7): 071401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201307008
[27] 沈功田, 耿荣生, 刘时风.声发射信号的参数分析方法[J].无损检测, 2002, 24(2): 72-77. doi: 10.3969/j.issn.1000-6656.2002.02.008
Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals[J]. Nondestructive Testing, 2002, 24(2): 72-77. doi: 10.3969/j.issn.1000-6656.2002.02.008
[28] Bacon D F, Konuru R, Murthy C, et al. Thin locks: featherweight synchronization for Java[J]. ACM SIGPLAN Notices, 2004, 39(4): 583-595. doi: 10.1145/989393.989452
-
访问统计