New website getting online, testing
Broadband terahertz tunable metasurface linear polarization converter based on graphene
  • Abstract

    A terahertz broadband tunable reflective linear polarization converter based on oval-shape-hollowed graphene metasurface is proposed and verified by simulation and Fabry-Perot multiple interference theory in this paper. Our designed metasurface model is similar to a sandwiched structure, which is consisted of the top layer of anisotropic elliptical perforated graphene structure, an intermediate dielectric layer and a metal ground plane. The simulation results show that when the given graphene relaxation time and Fermi energy are τ=1 ps and μc=0.9 eV, respectively, the polarization conversion rate (PCR) of the designed metasurface structure is over 90% in the frequency range of 0.98 THz~1.34 THz, and the relative bandwidth is 36.7%. In addition, at resonance frequencies of 1.04 THz and 1.29 THz, PCR is up to 99.8% and 97.7%, respectively, indicating that the metasurface we designed can convert incident vertical (horizontal) linearly polarized waves into reflected horizontal (vertical) linearly polarized waves. We used the Fabry-Perot multi-interference theory to further verify the metasurface model. The theoretical predictions are in good agreement with the numerical simulation results. In addition, the designed metasurface reflective linear polarization conversion characteristics can be dynamically adjusted by changing the Fermi energy and electron relaxation time of graphene. Therefore, our designed graphene-based tunable metasurface polarization converter is expected to have potential application value in terahertz communication, sensing and terahertz spectroscopy.

    Keywords

  • loading
  • References

    刘丰, 朱忠博, 崔万照.空间太赫兹信息技术展望[J].微波学报, 2013, 29(2): 1–6.

    http://d.old.wanfangdata.com.cn/Periodical/wbxb201302001

    Liu F, Zhu Z B, Cui W Z. Prospects on space THz information techniques[J]. Journal of Microwaves, 2013, 29(2): 1–6.

    http://d.old.wanfangdata.com.cn/Periodical/wbxb201302001

    Google Scholar

    Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26–33.

    http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLZZ200305002.htm

    Google Scholar

    Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 2009, 102(9): 093001.

    DOI: 10.1103/PhysRevLett.102.093001

    CrossRef Google Scholar

    Saeedkia D. Handbook of Terahertz Technology for Imaging, Sensing and Communications[M]. England: Woodhead Publishing, 2013: 641–662.

    Google Scholar

    贾宇轩, 范琦, 王云飞.基于超表面全息的多焦点透镜[J].光电工程, 2017, 44(7): 670–675.

    DOI: 10.3969/j.issn.1003-501X.2017.07.002

    Jia Y X, Fan Q, Wang Y F. Multi-focus lens based on metasurface holography[J]. Opto-Electronic Engineering, 2017, 44(7): 670–675.

    DOI: 10.3969/j.issn.1003-501X.2017.07.002

    CrossRef Google Scholar

    Chen C Y, Tsai T R, Pan C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals[J]. Applied Physics Letters, 2003, 83(22): 4497–4499.

    DOI: 10.1063/1.1631064

    CrossRef Google Scholar

    View full references list
  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2019.180519
    Cite this Article
    Zhang Hongtao, Cheng Yongzhi, Huang Mulin. Broadband terahertz tunable metasurface linear polarization converter based on graphene. Opto-Electronic Engineering 46, 180519 (2019). DOI: 10.12086/oee.2019.180519
    Download Citation
    Article History
    • Received Date September 04, 2018
    • Revised Date November 05, 2018
    • Published Date July 31, 2019
    Article Metrics
    Article Views(11359) PDF Downloads(4052)
    Share:
  • Related Articles

刘丰, 朱忠博, 崔万照.空间太赫兹信息技术展望[J].微波学报, 2013, 29(2): 1–6.

http://d.old.wanfangdata.com.cn/Periodical/wbxb201302001

Liu F, Zhu Z B, Cui W Z. Prospects on space THz information techniques[J]. Journal of Microwaves, 2013, 29(2): 1–6.

http://d.old.wanfangdata.com.cn/Periodical/wbxb201302001

Google Scholar

Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26–33.

http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLZZ200305002.htm

Google Scholar

Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 2009, 102(9): 093001.

DOI: 10.1103/PhysRevLett.102.093001

CrossRef Google Scholar

Saeedkia D. Handbook of Terahertz Technology for Imaging, Sensing and Communications[M]. England: Woodhead Publishing, 2013: 641–662.

Google Scholar

贾宇轩, 范琦, 王云飞.基于超表面全息的多焦点透镜[J].光电工程, 2017, 44(7): 670–675.

DOI: 10.3969/j.issn.1003-501X.2017.07.002

Jia Y X, Fan Q, Wang Y F. Multi-focus lens based on metasurface holography[J]. Opto-Electronic Engineering, 2017, 44(7): 670–675.

DOI: 10.3969/j.issn.1003-501X.2017.07.002

CrossRef Google Scholar

Chen C Y, Tsai T R, Pan C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals[J]. Applied Physics Letters, 2003, 83(22): 4497–4499.

DOI: 10.1063/1.1631064

CrossRef Google Scholar

Rutz F, Hasek T, Koch M, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911.

DOI: 10.1063/1.2397564

CrossRef Google Scholar

Yamada I, Takano K, Hangyo M, et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3): 274–276.

http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a188ed461ea7fbd8933dedb7846fac9

Google Scholar

Liu Y M, Zhang X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494–2507.

DOI: 10.1039/c0cs00184h

CrossRef Google Scholar

Pu M B, Chen P, Wang Y Q, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906.

DOI: 10.1063/1.4799162

CrossRef Google Scholar

Guo Y H, Yan L S, Pan W, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566–27575.

DOI: 10.1364/OE.23.027566

CrossRef Google Scholar

Guo Y H, Wang Y Q, Pu M B, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.

DOI: 10.1038/srep08434

CrossRef Google Scholar

Zhu J F, Li S F, Deng L, et al. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial[J]. Optical Materials Express, 2018, 8(5): 1164–1173.

DOI: 10.1364/OME.8.001164

CrossRef Google Scholar

唐雨竹, 马文英, 魏耀华, 等.一种旋转可调的太赫兹超材料及其传感特性[J].光电工程, 2017, 44(4): 453–457.

DOI: 10.3969/j.issn.1003-501X.2017.04.010

Tang Y Z, Ma W Y, Wei Y H, et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453–457.

DOI: 10.3969/j.issn.1003-501X.2017.04.010

CrossRef Google Scholar

Yang C, Luo Y, Guo J X, et al. Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene[J]. Optics Express, 2016, 24(15): 16913–16922.

DOI: 10.1364/OE.24.016913

CrossRef Google Scholar

Chen M, Chang L Z, Gao X, et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved "H" array[J]. IEEE Photonics Journal, 2017, 9(5): 4601011.

DOI: 10.1109/JPHOT.2017.2734915

CrossRef IEEE Photonics Journal, 2017, 9(5): 4601011.

" target="_blank">Google Scholar

Dai Y M, Ren W Z, Cai H B, et al. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7): 7465–7472.

DOI: 10.1364/OE.22.007465

CrossRef Google Scholar

Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1–72.

DOI: 10.1016/j.physrep.2016.04.004

CrossRef Google Scholar

Cong L Q, Cao W, Zhang X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107.

DOI: 10.1063/1.4826536

CrossRef Google Scholar

Cheng Y Z, Withayachumnankul W, Upadhyay A, et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 2014, 105(18): 181111.

DOI: 10.1063/1.4901272

CrossRef Google Scholar

Liu W W, Chen S Q, Li Z C, et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 2015, 40(13): 3185–3188.

DOI: 10.1364/OL.40.003185

CrossRef Google Scholar

Li C Y, Chang C C, Zhou Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 2017, 25(21): 25842–25852.

DOI: 10.1364/OE.25.025842

CrossRef Google Scholar

付亚男, 张新群, 赵国忠, 等.基于谐振环的太赫兹宽带偏振转换器件研究[J].物理学报, 2017, 66(18): 62–71.

DOI: 10.7498/aps.66.180701

Fu Y N, Zhang X Q, Zhao G Z, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 62–71.

DOI: 10.7498/aps.66.180701

CrossRef Google Scholar

Zhao J C, Cheng Y Z, Cheng Z Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves[J]. IEEE Photonics Journal, 2018, 10(1): 4600210.

DOI: 10.1109/jphot.2018.2792444

CrossRef Google Scholar

Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530–1534.

DOI: 10.1126/science.1158877

CrossRef Google Scholar

Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

DOI: 10.1063/1.2891452

CrossRef Google Scholar

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191.

DOI: 10.1038/nmat1849

CrossRef Google Scholar

Gan C H, Chu H S, Li E P. Synthesis of highly confined surface Plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 2012, 85(12): 125431.

DOI: 10.1103/PhysRevB.85.125431

CrossRef Google Scholar

Zhao J C, Cheng Y Z. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial[J]. Applied Physics B, 2016, 122(10): 255.

DOI: 10.1007/s00340-016-6533-6

CrossRef Google Scholar

Fang C, Cheng Y Z, He Q Z, et al. Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface[J]. Optik, 2017, 137: 148–155.

DOI: 10.1016/j.ijleo.2017.03.002

CrossRef Google Scholar

Xia R, Jing X F, Gui X C, et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials[J]. Optical Materials Express, 2017, 7(3): 977–988.

DOI: 10.1364/OME.7.000977

CrossRef Google Scholar

Falkovsky L A. Optical properties of graphene[J]. Journal of Physics: Conference Series, 2008, 129(1): 012004.

DOI: 10.1088/1742-6596/129/1/012004

CrossRef Google Scholar

Huang M L, Cheng Y Z, Cheng Z Z, et al. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Optics Communications, 2018, 415: 194–201.

DOI: 10.1016/j.optcom.2018.01.051

CrossRef Google Scholar

Zhu B F, Ren G B, Zheng S W, et al. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices[J]. Optics Express, 2013, 21(14): 17089–17096.

DOI: 10.1364/OE.21.017089

CrossRef Google Scholar

Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294.

DOI: 10.1126/science.1202691

CrossRef Google Scholar

Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908.

DOI: 10.1103/PhysRevLett.99.063908

CrossRef Google Scholar

Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307.

DOI: 10.1126/science.1235399

CrossRef Google Scholar

Gao X, Han X, Cao W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3522–3530.

DOI: 10.1109/TAP.2015.2434392

CrossRef Google Scholar

Cheng Y Z, Fang C, Mao X S, et al. Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency[J]. IEEE Photonics Journal, 2016, 8(6): 7805509.

DOI: 10.1109/JPHOT.2016.2624559

CrossRef Google Scholar

Tang J Y, Xiao Z Y, Xu K K, et al. Cross polarization conversion based on a new chiral spiral slot structure in THz region[J]. Optical and Quantum Electronics, 2016, 48(2): 111.

DOI: 10.1007/s11082-016-0407-3

CrossRef Google Scholar

李雄, 马晓亮, 罗先刚.超表面相位调控原理及应用[J].光电工程, 2017, 44(3): 255–275.

DOI: 10.3969/j.issn.1003-501X.2017.03.001

Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

DOI: 10.3969/j.issn.1003-501X.2017.03.001

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Huang Mulin

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Broadband terahertz tunable metasurface linear polarization converter based on graphene
    • Figure  1

      The design scheme of the metasurface. (a), (b) The front and perspective views of the unit-cell structure; (c) Three dimen-sional (3D) array structure

    • Figure  2

      The (a) real part and (b) imaginary part of the conductivity with fixed relaxation time τ=1.0 ps under different μc

    • Figure  3

      The (a) real part and (b) imaginary part of the conductivity with fixed μc=0.9 eV under different τ

    • Figure  4

      The simulated reflection coefficients (a) and γx(y) (b) of the designed metasurface with τ =1.0 ps, μc=0.9 eV

    • Figure  5

      (a) Schematic diagram of electric field vector decomposition after interaction of linearly polarized waves and unit-cell structure of metasurface; (b), (c) are the surface current density distributions of front layer surface structures at resonance frequencies of 1.04 THz and 1.28 THz, respectively. Where the thick black arrow indicates the direction of current flow

    • Figure  6

      Schematic sketch of the x-pol. wave propagation in a Fabry-Perot like resonance cavity

    • Figure  7

      The simulated and calculated (a) reflection coefficients and (b) γx of the designed metasurface with τ=1.0 ps, μc=0.9 eV under normal incident x-pol. wave

    • Figure  8

      The (a) simulated and (b) calculated γx of the designed metasurface with fixed relaxation time τ =1.0 psand different μc under normal incident -pol. wave

    • Figure  9

      The (a) simulated and (b) calculated γx of the designed metasurface with the fixed μc=0.9 eV and different τ under normal incident x-pol. wave

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9