Processing math: 100%
New website getting online, testing
Design and key technology research of portable UV-VIS spectrometer
  • Abstract

    With the widespread application of ultraviolet spectroscopy, low-cost portable ultraviolet spectrometer has become a research focus in this field. Firstly, the optical structure of the portable UV-VIS spectrometer was designed based on the crossed-asymmetric Czerny-Turner structure in the paper. Secondly, the key devices of ultraviolet spectrometer, namely ultraviolet detectors and blazed gratings, were studied. The coated UV-enhanced CCDs were fabricated using Lumogen fluorescent materials and vacuum coating methods. The influence of the position on the CCD surface of the fluorescent film on the resolution was analyzed. The effect of blazed gratings on the multi-order diffraction efficiency in the ultraviolet region was theoretically studied. Finally, the test results of performance of a portable UV-VIS spectrometer prototype show that the resolution of the 200 nm~900 nm band, 25 μm slit width, 600 lp/mm, 300 nm blazed grating configuration is less than 1.5 nm and the spectral responsivity increases to 20% in the spectral range varying from 200 nm to 300 nm, which meets the design requirements of the portable UV-VIS spectrometer.

    Keywords

  • 本文基于便携式紫外-可见光谱仪关键器件的理论分析,设计并制作了便携式紫外-可见光谱仪样机。使用汞氩灯光源对关键器件改进前后测试,分析紫外-可见光谱仪的光谱参数变化。便携式紫外-可见光谱仪的关键器件包括两个:紫外探测器和闪耀光栅。其中紫外探测器是最基本的器件,起到关键性的检测紫外波段作用。使用蒸镀法将荧光材料蒸镀到CCD表面,荧光材料的变频性将紫外光转换为可见光,从而实现紫外光的转换检测。比较荧光薄膜蒸镀到去掉保护玻璃和没有去掉保护玻璃的CCD表面的两处位置的紫外增强效果,分析两处位置对CCD分辨率的影响,选择在去掉保护玻璃的CCD表面蒸镀荧光材料的方法,保证便携式紫外-可见光谱仪整体分辨率设计要求;闪耀光栅作为另一个紫外响应关键器件,由于闪耀光栅多级衍射不同的能量分布,在紫外光谱仪中可以作用为增强紫外波段能量,提高光谱仪对紫外波段的灵敏度。依据闪耀光栅的光栅效率方程,理论分析了闪耀波长为300 nm和500 nm的两个闪耀光栅的光栅效率曲线,最后选取300 nm的闪耀光栅,不仅提高紫外波段一级衍射效率,以提高紫外探测灵敏度;同时有效地降低紫外波段二级衍射效率,以减少其作为杂散光对光谱探测的误差影响。

    紫外光谱探测技术已经广泛应用于火焰监测以及燃烧控制、太阳辐射测量、水处理以及表面消毒、紫外光源控制、紫外线净化、紫外线消毒、食品消毒控制、紫外线激光器控制、分光镜、电弧探测等方面[]。同时在化学检测领域,由于大多数分子的电子光谱处于紫外区域,而分子的电子光谱基本上能决定物质的化学反应,因此利用紫外光谱仪对分子的电子光谱进行分子的定性、定量分析,可以有效地进行分析物质的分子成分或者判断物质是否发生化学反应等应用研究[-]

    国内外针对便携式紫外光谱仪已经做了大量的研究,主要是对其中的探测器进行研究。由于普通电荷耦合器件(charge-coupled device, CCD)在紫外波段的响应效果非常差,目前采用背照式CCD的减薄和前照式CCD的紫外增敏两种方法来提高其紫外波段的响应。其中背照式CCD的减薄技术加工精密复杂,成本较高。为了取得良好的紫外光谱响应并降低探测器成本,国内外研究大部分采用在前照式线阵CCD上镀一层荧光薄膜的方式,利用荧光薄膜的变频性能实现紫外波段的转换检测[-]。例如美国海洋光学的USB4000-UV-VIS光谱仪中就是在线阵CCD Toshiba TCD 1304 AP表面添加了Lumogen荧光材料,,使得紫外波段的量子效率提高到20%。国内浙江大学使用同样的荧光材料和相同的CCD,使用物理气相沉积法,紫外波段量子效率可以提升至15%左右[]

    Figure 3. Optimized layout of the crossed-asymmetric Czerny-Turner spectrometer
    Full-Size Img PowerPoint

    Optimized layout of the crossed-asymmetric Czerny-Turner spectrometer

    i=arcsin(λcn2cos(Φ/2))+Φ2,

    图 5为全波段点列的Y轴均方根半径,可以看出在全波段点列的Y轴均方根半径均小于11 μm。

    从以上分析可知,所设计的Czerny-Turner光路在200 nm~ 900 nm的光谱范围内能够实验中心波长分辨率优于1 nm,边缘波长分辨率优于1.5 nm,达到设计目标。

    Figure 4. Spot diagrams of image plane
    Full-Size Img PowerPoint

    Spot diagrams of image plane

    Figure 5. RMS spot Y versus wavelength
    Full-Size Img PowerPoint

    RMS spot Y versus wavelength

    图 4为优化后ZEMAX软件中呈现的全波段的点列图。选取了5组特征波长的点列,从图中可以看出,所设计结构在全波段谱线可以清晰分离。

    Parameters Value
    i 24.8°
    θ 5.2°
    Φ 30°
    φ1 5.2°
    φ2 13°
    φ -1.3°
    LSM1 37.8 mm
    LM1G 40 mm
    LGM2 40 mm
    LM2D 69.95 mm
    CSV Show Table

    紫外光谱仪选用如图 1所示的交叉非对称式Czerny-Turner光路结构[],光线由狭缝a入射到准直镜M1,经准直镜作用后的平行光入射到闪耀光栅G表面,不同波长的光线在光栅的分光作用下按不同衍射角出射到聚焦镜M2,在聚焦镜聚焦作用下在探测器表面成像。图中φ1为准直镜离轴角,i为光栅入射角,θ为中心波长衍射角,Φ为中心波长入射光线与衍射光线的夹角,φ为像面倾角。

    光谱仪系统中,各光学元件的参数依据几何光学与像差理论相互约束,因而不能独立地选取各元件参数,需要依据元件间几何关系与成像原理依次流程设计,本文设计的光谱仪系统初始参数设计流程如图 2所示。首先从核心器件闪耀光栅开始,确定其输入参数:边缘波长λ1λ2、设计所需分辨率Δλ、光栅常数d。将上述参数带入光栅方程和角度方程:

    Figure 1. Layout of crossed-asymmetric Czerny-Turner system
    Full-Size Img PowerPoint

    Layout of crossed-asymmetric Czerny-Turner system

    Figure 2. Flowchart of determining initial parameters
    Full-Size Img PowerPoint

    Flowchart of determining initial parameters

    计算出光栅入射角i与中心波长衍射角θ。根据光谱仪分辨率要求和狭缝、光栅、准直镜等器件因素计算出各个器件之间距离。由于准直镜与聚焦镜为离轴球面反射镜,因而其物距与像距不为焦距,且子午像距与弧矢像距不同,在光谱仪中考虑分辨率因素,我们将像面放置在聚焦镜子午像面处。根据Coddington’s公式和Reader提出的消除中心波长彗差公式,计算出准直镜和聚焦镜的子午像距和子午焦距,确定光谱仪光路结构中的仪器初始参数[-]

    Optical elements Parameters Value
    Slit a 25 μm
    Collimating mirror f1 38.7 mm
    Focusing mirror f2 70.8 mm
    Blazing grating n 600 lp/mm
    CSV Show Table

    闪耀光栅是光谱仪中的核心器件,一般平面光栅能量集中在无色散的衍射零级,这是因为普通衍射光栅的单缝衍射零级主级大方向与多缝干涉零级主级大方向重合。在实际光谱仪成像中,需要将光谱能量集中到所需要的衍射级次,选取平面闪耀光栅作为分光衍射元件。本文设计的紫外光谱仪测量范围为200 nm~900 nm,所设计的光谱仪要求分辨率达到Δλ=1 nm。选用光栅线对数n为600 lp/mm,光栅常数d=1/n。中心波长的入射光线与衍射光线的夹角Φ取30 ,如图 1所示。基于几何光学和相差理论等建立起整个光谱仪的初始结构,参数如表 1所示。

    完成整个结构的初始参数设计后,将参数导入到ZEMAX软件进行模拟优化,由于宽波段光谱仪还存在像散、场曲等像差,其最佳像面并非位于聚焦镜焦面,同时由于设计只消除了中心波长彗差,因而像面倾角也不为0°,需要优化像面的位置与角度参数使得宽波段衍射光线都能够在像面上得到聚焦。将聚焦镜与像面之间的距离与像面倾角设为优化变量,子午方向与弧矢方向的权重为1:0,开始进行优化。优化后光路图如图 3所示,从图中可以看出优化后全波段光线近似聚焦在同一平面,该焦平面即为优化后最佳像面。优化后聚焦镜距CCD距离为69.95 mm,像面倾角Φ=-1.3°,优化后结构参量如表 2所示。

    θ=Φi,

    制作出镀膜紫外增强CCD后,使用Newport公司的QE/IPCE测量套件测试其响应度。使用单色仪和积分球将不同波长的光分别均匀照射到镀膜紫外增强CCD和标准光功率计中,计算出两个器件的数据的比值即为响应度结果[-]。如图 6(b)所示,在200 nm~300 nm波长处,镀膜后CCD的响应度由原始CCD几乎为0%提高到20%左右。

    荧光材料成膜技术在国内已经有很多成熟的研究,王丽辉等对可以增强CCD紫外响应的荧光材料进行了讨论分析[]。张大伟等对其中的荧光材料Lumogen进行了成膜分析[]。本文使用的材料与张大伟等人使用的材料相同,都是德国BASF的Lumogen荧光材料。从张大伟等人的研究可以知道,荧光材料成膜时,相比于简单的旋涂法,蒸镀法成膜后的薄膜表面粗糙度较小,能够有效提高成像器件的分辨率。同时Lumogen荧光材料使用蒸镀法成膜时,制成的荧光薄膜的最佳厚度为0.42 μm左右[]。所以本文所选用的成膜方法为效果较好的蒸镀法,蒸镀薄膜的厚度目标为0.42 μm左右。

    对于紫外光谱仪而言,将光路设计完成后,想要能够测试紫外光,还需要两个关键的器件:能够测试紫外光的紫外探测器和能够提高紫外光灵敏度的闪耀光栅。本文选用一款灵敏度高、暗电流低的线阵快门型CCD探测器Toshiba TCD 1304 DG,此CCD具有3648个像素,有利于光谱的分辨率提高,响应度峰值波长为550 nm。荧光材料选择为德国BASF的Lumogen Yellow S 0790,呈黄绿色粉末状。激发波长范围为200 nm~400 nm,发射波长范围为500 nm~600 nm[]。荧光材料发射波长范围在探测器TCD 1304 DG的响应度峰值波长周围,吸收波长范围在紫外波长区域,符合紫外荧光增强探测器所需材料的条件。

    蒸镀法成膜时,将固体的粉末材料放置在真空室内的通电钨舟内,固定电流1 A,以恒定上升的温度变化保持材料的蒸发速度。荧光材料在真空高温蒸发下,沉积到基底表面,形成薄膜。蒸镀过程中,基底上固定有石英基片和CCD感光层器件,且保持匀速转动,使得制成的膜层均匀,最终制得厚度为0.4 μm的荧光薄膜。

    Figure 6. The parameter test curve of the coated CCD. (a) CCD response curves of 253 nm ultraviolet light incident; (b) Spectral response curves of coated CCD
    Full-Size Img PowerPoint

    The parameter test curve of the coated CCD. (a) CCD response curves of 253 nm ultraviolet light incident; (b) Spectral response curves of coated CCD

    将Lumogen荧光材料分别蒸镀到去掉保护玻璃后的和没有去掉保护玻璃的CCD表面。使用253 nm的高强度的光纤光源,垂直于荧光薄膜,直接照射到CCD表面,比较测试镀膜前CCD和镀膜后荧光薄膜分别位于两处位置时的紫外响应效果。结果如图 6(a)所示,镀膜CCD中去掉保护玻璃的荧光增强曲线比没有去掉保护玻璃的曲线要窄,半波峰宽相差3倍多,且和未镀膜CCD的紫外响应的宽度几乎相同。荧光材料的发光性能是各向同性的,所以荧光薄膜距离感光层的距离越远,则荧光发射越分散,制作镀膜CCD的分辨率也越差[]。所以制作镀膜紫外增强CCD时,将薄膜蒸镀到去保护玻璃后的CCD表面,其紫外响应的分辨率几乎不会受到影响。

    图 7(a)是闪耀波长为500 nm闪耀光栅的一级衍射光栅效率曲线,在波长500 nm处效率最大,在250 nm处效率只有0%。所以在紫外光谱仪中使用这类光栅时,在250 nm左右很难得到较好的紫外光谱数据。图 7(b)是闪耀波长为300 nm闪耀光栅的一级衍射光栅效率曲线,在波长300 nm处效率取得最大值,在紫外波长250 nm时效率依然为88%,在500 nm也有60%,所以使用这类的闪耀光栅时,紫外光谱仪在200 nm~400 nm有很高的灵敏度,同时在紫外-可见全部波段有较高响应。

    η={sin[π(λ0λm)]π(λ0λm)}2,

    所有光谱仪中,光谱图形主要使用的是一级衍射光谱,二级衍射光谱为杂散光,需要另外加入二级滤波片消除。因此,图 7(c)中,闪耀波长500 nm的闪耀光栅的二级衍射光栅效率曲线在波长250 nm处效率最大,在500 nm处效率为0%,此时,使用此类闪耀光栅时,250 nm过高的二级衍射光会造成杂散光难以完全消除,影响到紫外-可见光谱仪光谱的读取。图 7(d)中,闪耀波长300 nm的闪耀光栅的二级衍射效率曲线整体不大于40%,便于后期的杂散光消除。所以在设计制作便携式紫外-可见光谱仪时,选用闪耀波长为300 nm的闪耀光栅有更好的紫外光谱响应,同时还能减少杂散光的影响。

    作为紫外光谱仪中的一个重要器件,闪耀光栅的选择很大程度影响着紫外-可见光谱仪的性能。便携式紫外-可见光谱仪中选用的光栅为平面闪耀光栅,常用的平面闪耀光栅为600 lp/mm。由于不同闪耀波长光栅的多级衍射的能量分布不同,因此不同光谱仪器中对于闪耀波长也会有不同的选择。通常使用闪耀光栅的效率公式来进行选择分析[]

    以波长范围为200 nm~900 nm为例进行数据拟合,光谱级次m分别为一级衍射、二级衍射,选用光谱仪中常用的闪耀波长λ0分别为300 nm、500nm的两种闪耀光栅,得到一级和二级衍射的光栅效率曲线如图 7所示。

    式中:η为光栅效率,λ为波长,λ0为闪耀波长,m为光谱级次。

    Figure 7. Different order relative efficiency curves at different blaze wavelengths. First order relative efficiency curve at blaze wavelength of (a) 500 nm and (b) 300 nm; Second order relative efficiency curve at blaze wavelength of (c) 500 nm and (d) 300 nm
    Full-Size Img PowerPoint

    Different order relative efficiency curves at different blaze wavelengths. First order relative efficiency curve at blaze wavelength of (a) 500 nm and (b) 300 nm; Second order relative efficiency curve at blaze wavelength of (c) 500 nm and (d) 300 nm

    Figure 8. The prototype of portable UV-VIS spectrometer
    Full-Size Img PowerPoint

    The prototype of portable UV-VIS spectrometer

    积分时间为4 ms,测试范围200 nm~900 nm,测试汞氩灯光谱图结果如图 9图 10所示。图 9为光谱仪中使用500 nm闪耀波长的闪耀光栅测试汞氩灯光谱图,一级光谱中253.652 nm的光强在CCD镀膜前后(图 9(a)图 9(b))没有明显的增强变化,二级光谱中253.652 nm(图 9中507.304 nm位置处)的光强在CCD镀膜前后有很明显的增强效果,但是此处增强出现的二级光谱已经成为杂散光。图 9测试的汞氩灯光谱图结果同式(3)和图 7(a)7(c)的理论分析相一致。

    本文设计制作的便携式紫外-可见光谱仪,加入了二级滤光片,装调测试汞氩灯光谱为图 11(a)。其中边缘波长为253.652 nm的波峰为图 11(b),半波峰宽为1.5 nm。靠近中心波长576. 960 nm和579.066 nm,光谱数据如图 11(c)所示,根据瑞利判据,表明紫外光谱仪整体的分辨率不大于1.5 nm。将汞氩灯中部分紫外波长与可见波段典型波长546.074 nm进行相对光强比,比较改进前后紫外-可见光谱仪的相对光强比,如表 3。紫外波段253.652 nm波长相对光强比值从改进前的0.03变为改后的1.32,其它波段均有比较明显的提高,说明改进后紫外-可见光谱仪紫外波段的相对光强增强非常明显。

    Figure 11. Hg-Ar spectrum with portable UV-VIS spectrometer. (a) Hg-Ar spectrum with portable UV-VIS spectrometer; (b) The spectrum of 253.652 nm; (c) The spectrum at 576.960 nm and 579.066 nm
    Full-Size Img PowerPoint

    Hg-Ar spectrum with portable UV-VIS spectrometer. (a) Hg-Ar spectrum with portable UV-VIS spectrometer; (b) The spectrum of 253.652 nm; (c) The spectrum at 576.960 nm and 579.066 nm

    Wavelength/nm Before improvement After improvement
    253.652 0.03 1.32
    296.728 0.03 0.11
    313.155 0.04 0.34
    365.015 0.45 0.48
    546.074 1 1
    CSV Show Table

    其中:SNR为信噪比,S为每个像元输出值的平均值,σ为每个像元输出值的标准差,D为每个像元暗光谱的输出平均值。取紫外波段200 nm~300 nm范围内全部像元,计算得出改进前光谱仪的信噪比为10.86,而改进后的信噪比为330.64。比较图 9(a)改进前光谱仪对于汞氩灯响应光谱图,和图 11改进后的汞氩灯响应光谱图,从中可以看出改进后的便携式紫外-可见光谱仪在紫外部分的信号响应非常明显,强度达到饱和。所以其紫外部分的信噪比在改进后有非常高的提升。

    Figure 9. Hg-Ar spectra of blaze grating at blaze wavelength of 500 nm with (a) original CCD and (b) coated CCD
    Full-Size Img PowerPoint

    Hg-Ar spectra of blaze grating at blaze wavelength of 500 nm with (a) original CCD and (b) coated CCD

    Figure 10. Hg-Ar spectra of blaze grating at blaze wavelength of 300 nm with (a) original CCD and (b) coated CCD
    Full-Size Img PowerPoint

    Hg-Ar spectra of blaze grating at blaze wavelength of 300 nm with (a) original CCD and (b) coated CCD

    SNR=(SD)/σ,

    按照信噪比计算公式:

    通过上述光路结构设计,和对于紫外光谱仪的关键器件讨论研究,研制了一款便携式紫外-可见光谱仪样机,结构如图 8所示。光路器件按照光路结构设计所述参数制作,其中的关键器件,紫外探测器使用自行研制的镀膜紫外增强CCD,镀有Lumogen Yellow S 0790荧光材料的线阵CCD TCD 1304 DG;闪耀光栅选用600 lp/mm,闪耀波长为300 nm的闪耀光栅。同时为了验证闪耀光栅的光栅效率理论分析,使用装有600 lp/mm,闪耀波长为500 nm闪耀光栅的便携式光谱仪,分别测试汞氩灯(Ocean Optics HG-1型号)光谱,光谱测试范围为200 nm~900 nm。

    图 10为紫外-可见光谱仪中使用300 nm闪耀波长的闪耀光栅测试汞氩灯光谱图,一级光谱中253.652 nm的光强在CCD镀膜前后(即从图 10(a)图 10(b))有非常明显的增强效果,二级光谱中的光强增强效果相对较弱。紫外光谱仪显示的光谱图形主要为一级衍射光谱,二级衍射光谱将会被二级滤波片消除。同时对比图 9(b)图 10(b),可以看出,一级衍射光谱中,图 10(b)253.652 nm的光谱灵敏度要比图 9(b)高很多。从而验证了理论分析中在紫外-可见光谱仪中对于两种闪耀波长的闪耀光栅的选择。此外,从镀膜前后(图 9图 10中从(a)到(b))的变化可以看出,在300 nm处的一级衍射紫外波长和500 nm处的二级衍射紫外波长位置,紫外光光强都有明显的提高,表明了自行研制的镀膜紫外增强CCD显著的紫外增强效果。

    本文基于交叉型C-T光路结构设计了一款便携式紫外-可见光谱仪,给出光学系统的设计参数。针对紫外-可见光谱仪中增强紫外响应的关键器件,研制了镀膜紫外增强CCD,以Lumogen Yellow S 0790材料为荧光变频材料,将荧光薄膜蒸镀到去掉保护玻璃的线阵CCD TCD 1304 DG上。使得线阵CCD的紫外响应度在200 nm~300 nm从原有的几乎为0%提高到20%左右,同时还不影响CCD紫外响应的分辨率;利用光栅效率公式,理论分析了闪耀波长为300 nm和500 nm的闪耀光栅的一级和二级衍射光栅效率曲线,据此选择使用闪耀波长为300 nm的闪耀光栅为便携式紫外-可见光谱仪的器件。通过对关键器件的分析和制作,研制出一款便携式紫外-可见光谱仪样机。测试200 nm~900 nm的汞氩灯光谱,对光栅效率的理论分析进行验证。研制的便携式紫外光谱仪紫外波段光谱灵敏度得到较大的提升,整体分辨率不大于1.5 nm,达到便携式紫外光谱仪设计要求。

  • References

    杨杰.紫外探测技术的应用与进展[J].光电子技术, 2011, 31(4): 274–278.

    http://d.old.wanfangdata.com.cn/Periodical/gdzjs201104012

    Yang J. The application and development of UV detection technology[J]. Optoelectronic Technology, 2011, 31(4): 274–278.

    http://d.old.wanfangdata.com.cn/Periodical/gdzjs201104012

    Google Scholar

    Weiser H, Vitz R C, Moos H W, et al. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy[J]. Applied Optics, 1976, 15(12): 3123–3130.

    DOI: 10.1364/AO.15.003123

    CrossRef Google Scholar

    陈雪, 李宗轩, 闫丰, 等.日盲紫外像增强器绝对光谱响应测试系统[J].光电工程, 2016, 43(5): 8–14.

    DOI: 10.3969/j.issn.1003-501X.2016.05.002

    Chen X, Li Z X, Yan F, et al. Test system for absolute spectral response of SBUV image intensifier[J]. Opto-Electronic Engineering, 2016, 43(5): 8–14.

    DOI: 10.3969/j.issn.1003-501X.2016.05.002

    CrossRef Google Scholar

    冯帆, 段发阶, 伯恩, 等.一种小型中阶梯光栅光谱仪的光学设计[J].光电工程, 2014, 41(7): 20–25.

    DOI: 10.3969/j.issn.1003-501X.2014.07.004

    Feng F, Duan F J, Bo E, et al. An optical design of small-size echelle spectrograph[J]. Opto-Electronic Engineering, 2014, 41(7): 20–25.

    DOI: 10.3969/j.issn.1003-501X.2014.07.004

    CrossRef Google Scholar

    Franks W A R, Kiik M J, Nathan A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352–358.

    DOI: 10.1109/TED.2003.809029

    CrossRef Google Scholar

    刘琼, 马守宝, 钱晓晨, 等. CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报, 2017, 46(6): 0604002.

    http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

    Liu Q, Ma S B, Qian X C, et al. Thickness optimization and photoelectric performance test of UV sensitized film of COMS sensor[J]. Acta Photonica Sinica, 2017, 46(6): 0604002.

    http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

    Google Scholar

    View full references list
  • Cited by

    Periodical cited type(4)

    1. 郑麒麟,文龙,陈沁. 基于散斑检测的微型计算光谱仪研究进展. 光电工程. 2021(03): 4-18 . 本站查看
    2. 黄良坤,温泉,温志渝,庾繁,刘海涛,洪明坚,谢瑛珂. 微型紫外光谱仪分析系统的研究. 激光与光电子学进展. 2020(05): 272-278 .
    3. 孙阳,刘翠玲,孙晓荣,徐金阳,杨雨菲. 基于便携式近红外光谱仪的面粉品质快速筛查方法研究. 食品科技. 2020(10): 267-272 .
    4. 周颖,黄云彪,魏康林,甄长飞,温志渝. 基于平面反射式光栅的微型紫外-可见光谱仪设计. 自动化仪表. 2019(07): 36-39 .

    Other cited types(7)

  • Author Information

    • Wang Guodong, WangGD@mail.hfut.edu.cn On this SiteOn Google Scholar
      • National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei, Anhui 230009, China
    • Corresponding author: Xia Guo, xiaguo@hfut.edu.cn On this SiteOn Google Scholar

      Xia Guo, E-mail: xiaguo@hfut.edu.cn

      • National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei, Anhui 230009, China
      • Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei, Anhui 230031, China
    • Li Zhiyuan On this SiteOn Google Scholar
      • National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei, Anhui 230009, China
    • Hu Mingyong On this SiteOn Google Scholar
      • National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei, Anhui 230009, China
    • Lu Hongbo On this SiteOn Google Scholar
      • National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei, Anhui 230009, China
  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.12086/oee.2018.180195
    Cite this Article
    Wang Guodong, Xia Guo, Li Zhiyuan, Hu Mingyong, Lu Hongbo. Design and key technology research of portable UV-VIS spectrometer. Opto-Electronic Engineering 45, 180195 (2018). DOI: 10.12086/oee.2018.180195
    Download Citation
    Article History
    • Received Date April 15, 2018
    • Revised Date June 17, 2018
    • Published Date September 30, 2018
    Article Metrics
    Article Views(13602) PDF Downloads(4203)
    Share:
  • Related Articles

  • Optical elements Parameters Value
    Slit a 25 μm
    Collimating mirror f1 38.7 mm
    Focusing mirror f2 70.8 mm
    Blazing grating n 600 lp/mm
    View in article Downloads
  • Parameters Value
    i 24.8°
    θ 5.2°
    Φ 30°
    φ1 5.2°
    φ2 13°
    φ -1.3°
    LSM1 37.8 mm
    LM1G 40 mm
    LGM2 40 mm
    LM2D 69.95 mm
    View in article Downloads
  • Wavelength/nm Before improvement After improvement
    253.652 0.03 1.32
    296.728 0.03 0.11
    313.155 0.04 0.34
    365.015 0.45 0.48
    546.074 1 1
    View in article Downloads

杨杰.紫外探测技术的应用与进展[J].光电子技术, 2011, 31(4): 274–278.

http://d.old.wanfangdata.com.cn/Periodical/gdzjs201104012

Yang J. The application and development of UV detection technology[J]. Optoelectronic Technology, 2011, 31(4): 274–278.

http://d.old.wanfangdata.com.cn/Periodical/gdzjs201104012

Google Scholar

Weiser H, Vitz R C, Moos H W, et al. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy[J]. Applied Optics, 1976, 15(12): 3123–3130.

DOI: 10.1364/AO.15.003123

CrossRef Google Scholar

陈雪, 李宗轩, 闫丰, 等.日盲紫外像增强器绝对光谱响应测试系统[J].光电工程, 2016, 43(5): 8–14.

DOI: 10.3969/j.issn.1003-501X.2016.05.002

Chen X, Li Z X, Yan F, et al. Test system for absolute spectral response of SBUV image intensifier[J]. Opto-Electronic Engineering, 2016, 43(5): 8–14.

DOI: 10.3969/j.issn.1003-501X.2016.05.002

CrossRef Google Scholar

冯帆, 段发阶, 伯恩, 等.一种小型中阶梯光栅光谱仪的光学设计[J].光电工程, 2014, 41(7): 20–25.

DOI: 10.3969/j.issn.1003-501X.2014.07.004

Feng F, Duan F J, Bo E, et al. An optical design of small-size echelle spectrograph[J]. Opto-Electronic Engineering, 2014, 41(7): 20–25.

DOI: 10.3969/j.issn.1003-501X.2014.07.004

CrossRef Google Scholar

Franks W A R, Kiik M J, Nathan A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352–358.

DOI: 10.1109/TED.2003.809029

CrossRef Google Scholar

刘琼, 马守宝, 钱晓晨, 等. CMOS传感器紫外敏化膜层的厚度优化及其光电性能测试[J].光子学报, 2017, 46(6): 0604002.

http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

Liu Q, Ma S B, Qian X C, et al. Thickness optimization and photoelectric performance test of UV sensitized film of COMS sensor[J]. Acta Photonica Sinica, 2017, 46(6): 0604002.

http://d.old.wanfangdata.com.cn/Periodical/gzxb201706031

Google Scholar

Alexander S J. Phosphor coated UV-responsive CCD image sensors[D]. Waterloo, Ontario: University of Waterloo, 2002.

Google Scholar

Franks W A R. Inorganic phosphor coatings for ultraviolet responsive image detectors[D]. Waterloo, Ontario: University of Waterloo, 2000.

Google Scholar

童建平, 高建勋, 汪飞, 等.微型光谱仪中传感器S11639的非线性校正[J].光电工程, 2017, 44(11): 1101–1106.

10.3969/j.issn.1003-501X.2017.11.010

Tong J P, Gao J X, Wang F, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101–1106.

10.3969/j.issn.1003-501X.2017.11.010

Google Scholar

Cheng L, Chen Y P, Zhu R B, et al. Design and Realization of Micro Fiber Spectrometers for Bioluminescence Detecting Systems' Stray Light Detection[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 14(2):427–429.

http://ieeexplore.ieee.org/xpl/abstractReferences.jsp?tp=&arnumber=4134752

Google Scholar

Xia G, Wu S, Wang G D, et al. Astigmatism-free Czerny-Turner compact spectrometer with cylindrical mirrors[J]. Applied Optics, 2017, 56(32): 9069–9073.

DOI: 10.1364/AO.56.009069

CrossRef Google Scholar

Kingslake R. Who? Discovered coddington's Equations?[J]. Optics and Photonics News, 1994, 5(8): 20–23.

DOI: 10.1364/OPN.5.8.000020

CrossRef Google Scholar

Reader J. Optimizing Czerny–Turner spectrographs: a comparison between analytic theory and ray tracing[J]. Journal of the Optical Society of America, 1969, 59(9): 1189–1196.

DOI: 10.1364/JOSA.59.001189

CrossRef Google Scholar

Keough S J, Hanley T L, Wedding A B, et al. Grazing incidence X-ray studies of ultra-thin Lumogen films[J]. Surface Science, 2007, 601(24): 5744–5749.

DOI: 10.1016/j.susc.2007.06.053

CrossRef Google Scholar

王丽辉, 王孝坤, 陈波.增强CCD紫外和极紫外成像的荧光物质的研究[J].光学技术, 2006, 32(S1): 479–481.

http://d.old.wanfangdata.com.cn/Periodical/gxjs2006z1129

Wang L H, Wang X K, Chen B. Study of ultraviolet and extreme ultraviolet phosphors for imaging detector[J]. Optical Technique, 2006, 32(S1): 479–481.

http://d.old.wanfangdata.com.cn/Periodical/gxjs2006z1129

Google Scholar

张大伟, 田鑫, 黄元申, 等. CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5): 1171–1174.

DOI: 10.3964/j.issn.1000-0593(2010)05-1171-04

Zhang D W, Tian X, Huang Y S, et al. Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1171–1174.

DOI: 10.3964/j.issn.1000-0593(2010)05-1171-04

CrossRef Google Scholar

Tao C X, Ruan J, Shu S P, et al. Thickness dependence of ultraviolet-excited photoluminescence efficiency of lumogen film coated on charge-coupled device[J]. Current Optics and Photonics, 2017, 1(4): 284–288.

http://www.etoponline.com/copp/abstract.cfm?uri=copp-1-4-284

Google Scholar

杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5): 753–757.

http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025

Du C G, Sun L Q, Ding Z T. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5): 753–757.

http://d.old.wanfangdata.com.cn/Periodical/gxjs201005025

Google Scholar

Zhao Y H, Yan F, Lou H W, et al. Measurement technology for relative spectral responsivity of the ultraviolet ICCD[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1371–1374.

http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx200905051

Google Scholar

赵友全, 江磊, 何峰, 等.线阵CCD光电响应非线性特性测定与分析[J].光电工程, 2015, 42(7): 19–23.

DOI: 10.3969/j.issn.1003-501X.2015.07.004

Zhao Y Q, Jiang L, He F, et al. Measurement and analysis of linear CCD nonlinear optical response characteristics[J]. Opto-Electronic Engineering, 2015, 42(7): 19–23.

DOI: 10.3969/j.issn.1003-501X.2015.07.004

CrossRef Google Scholar

Mouroulis P, Wilson D W, Maker P D, et al. Convex grating types for concentric imaging spectrometers[J]. Applied Optics, 1998, 37(31): 7200–7208.

DOI: 10.1364/AO.37.007200

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Lu Hongbo

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Design and key technology research of portable UV-VIS spectrometer
    • Figure  1

      Layout of crossed-asymmetric Czerny-Turner system

    • Figure  2

      Flowchart of determining initial parameters

    • Figure  3

      Optimized layout of the crossed-asymmetric Czerny-Turner spectrometer

    • Figure  4

      Spot diagrams of image plane

    • Figure  5

      RMS spot Y versus wavelength

    • Figure  6

      The parameter test curve of the coated CCD. (a) CCD response curves of 253 nm ultraviolet light incident; (b) Spectral response curves of coated CCD

    • Figure  7

      Different order relative efficiency curves at different blaze wavelengths. First order relative efficiency curve at blaze wavelength of (a) 500 nm and (b) 300 nm; Second order relative efficiency curve at blaze wavelength of (c) 500 nm and (d) 300 nm

    • Figure  8

      The prototype of portable UV-VIS spectrometer

    • Figure  9

      Hg-Ar spectra of blaze grating at blaze wavelength of 500 nm with (a) original CCD and (b) coated CCD

    • Figure  10

      Hg-Ar spectra of blaze grating at blaze wavelength of 300 nm with (a) original CCD and (b) coated CCD

    • Figure  11

      Hg-Ar spectrum with portable UV-VIS spectrometer. (a) Hg-Ar spectrum with portable UV-VIS spectrometer; (b) The spectrum of 253.652 nm; (c) The spectrum at 576.960 nm and 579.066 nm

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10
    • Figure  11
    Design and key technology research of portable UV-VIS spectrometer
    • Optical elements Parameters Value
      Slit a 25 μm
      Collimating mirror f1 38.7 mm
      Focusing mirror f2 70.8 mm
      Blazing grating n 600 lp/mm
    • Parameters Value
      i 24.8°
      θ 5.2°
      Φ 30°
      φ1 5.2°
      φ2 13°
      φ -1.3°
      LSM1 37.8 mm
      LM1G 40 mm
      LGM2 40 mm
      LM2D 69.95 mm
    • Wavelength/nm Before improvement After improvement
      253.652 0.03 1.32
      296.728 0.03 0.11
      313.155 0.04 0.34
      365.015 0.45 0.48
      546.074 1 1
    • Table  1

      Parameters of optical elements

        1/3
    • Table  2

      Parameters of optimized structure

        2/3
    • Table  3

      The light intensity ratio between other wavelengths and 546.074 nm of spectrometer before and after improvement

        3/3