-
摘要
为了解决光纤多普勒测振仪远距离非接触测量物体振动时,信号偏弱、过零点波形凌乱、难于解调的问题,本文提出了一种新型光纤准直系统。本系统主要采用在小型C-lens光纤准直器后端增加整形系统并借助ZEMAX软件对高斯光束进行准直并优化,通过对光纤准直系统成品进行耦合测试实验,使用C-lens准直器与光纤准直系统进行信号耦合效率的测试对比。实验结果表明:改进后的准直系统能够满足2 m的工作距离,空间返回光耦合效率最大能达到6.3%,极大地提升了多普勒信号的对比度,提高了远距离光纤多普勒测振仪对振动的测量精度。
Abstract
In order to solve the problem of weak signal, messy waveform at zero-point and difficult demodulation, when the optical Doppler vibrometer in the long-distance non-contact measurement, in this paper, a new type of optical fiber collimation system is proposed. The system mainly uses an augmented beam shaping system at the end of a small C-lens optical fiber collimator and the Gaussian beam is collimated and optimized by ZEMAX software. Through the coupling test of finished product of optical fiber collimation system, and compared with the signal coupling efficiency of C-lens collimator. The experimental results show that the improved collimation system can meet the working distance of 2 meters, and the coupling efficiency of space return optical up to 6.3%, which greatly enhances the Doppler signal contrast and improves the long-distance optical fiber Doppler vibration measurement accuracy.
-
Key words:
- fiber collimator /
- optical fiber Doppler measurement system /
- coupling efficiency /
- EDFA
-
Overview
Overview: When an optical Doppler vibrometer with the C-lens or G-lens collimator is used in the long-distance non-contact measurement, there exists problems like weak signal, messy waveform at zero-point and difficulty of demodulation. The rear end of G-lens fiber collimator is plane. The refractive index of the lens along the gradient changes, and the focal length can be achieved by changing the length of the lens. Generally speaking, 0.23 cycle length is used to achieve the collimation effect. The C-lens collimator for our own research and development, with good long-distance performance and low cost, uses a constant refractive index of the thick lens. The rear end of the spherical surface of the front bevel 8°. In order to solve these problems, a new configuration type of collimation system is obtained by adding a beam shaping system at the end of a small C-lens fiber collimator and optimizing the Gaussian beam with ZEMAX software. The 1550 nm invisible laser beam emitted by the fiber collimator is collimated and optimized through the beam shaping system, and irradiate on the surface of the vibrating object at a distance of 2 m. The beam reflected by the vibrating object is coupled back to the C-lens collimator through the beam shaping system to achieve a return light signal with high coupling efficiency.
The experimental setup is built for the designed collimation system as shown in the figure. At first, the beam emitted by the DFB laser is amplified by the EDFA. The use of the optical circulator effectively enables the return light to be output from the 3-port, which introduces a small amount of insertion loss compared to the conventional 3 dB coupler, thereby significant improvement of the utilization of the light power is emitted by the light source. Then passing through the C-lens collimator and the beam shaping system and incident perpendicularly onto the surface of the objectThe beam is finally reflected by the surface of the object and returned to the system and outputted through the circulator port 3. Lastly, the optical power of the output light can be measured by optical power meter.
The experimental results provide a reference for improving the contrast of the Doppler interference signals obtained by long-distance non-contact measurement of vibrating objects. The results show that the system can meet the working distance of 2 m and the space coupling efficiency of the return optical transmission reaches 6.3%, it greatly reduce the subsequent data processing work of vibration measurement experiment.
-
-
表 1 光学设计指标
Table 1. Optical design index
Parameter Value Work wavelength/nm 1550±30 Zoom ratio 9× Length range/m 2 Total length/mm < 90 表 2 EDFA主要参数
Table 2. EDFA main parameters
Parameter Value Work wavelength/nm 1530~1568 Input power/mW 0.25 ~2 Adjustable gain/mW 200 Noise index/mW 3.55 Power supply DC+5 V
(Working current: 350 mA)Pigtail FC/APC 表 3 C-lens准直系统耦合效率测试数据
Table 3. C-lens collimation system coupling efficiency test data
Wave-
length/nmP1/mW P2/mW P3/μW Coupling
efficiency
(P3/P2)/%0 0 0 0 2.1 1.670 0.2 0.01 4.1 3.205 1 0.03 6.1 4.767 3 0.06 8.1 6.313 13 0.02 1550 10.1 7.816 16 0.02 12.0 9.397 28 0.03 14.0 10.86 33 0.03 16.1 12.49 37 0.03 18.1 13.96 52 0.037 20.1 16.74 104 0.06 表 4 改进后准直系统耦合效率测试数据
Table 4. Improved collimation system coupling efficiency test data
Wave-
length/nmP1/mW P2/mW P3/mW Coupling
efficiency
(Р3/Р2)/%0 0 0 0 2.1 1.670 0.042 2.51 4.1 3.205 0.096 3 6.1 4.767 0.192 4.1 8.1 6.313 0.308 4.88 1550 10.1 7.816 0.406 5.2 12.0 9.397 0.523 5.55 14.0 10.86 0.614 5.65 16.1 12.49 0.727 5.8 18.1 13.96 0.838 6 20.1 16.74 1.05 6.3 -
参考文献
[1] Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
[2] 汪源源, FISH P J.多普勒信号分析技术的比较研究[J].复旦学报(自然科学版), 1996, 35(1): 53-61.
Wang Y Y, Fish P J. Comparison research of Doppler signal analysis techniques[J]. Journal of Fudan University (Natural Science), 1996, 35(1): 53-61
[3] 毛士艺, 张瑞生, 许伟武, 等.脉冲多普勒雷达[M].北京:国防工业出版社, 2016.
[4] 彭其先, 蒙建华, 王德田, 等.全光纤速度干涉仪设计及应用[J].光子学报, 2010, 39(11): 2008-2011. http://d.wanfangdata.com.cn/Periodical_gzxb201011018.aspx
Peng Q X, Meng J H, Wang D T, et al. Design and application of all-fiber velocity interferometer[J]. Acta Photonica Sinica, 2010, 39(11): 2008-2011. http://d.wanfangdata.com.cn/Periodical_gzxb201011018.aspx
[5] 朱少丽, 徐秋霜, 刘德森.自聚焦透镜在光纤准直器中的应用分析[J].西南师范大学学报(自然科学版), 2004, 29(3): 379-382. http://www.cqvip.com/QK/93403X/200403/9781065.html
Zhu S L, Xu Q S, Liu D S, The analysis of GRIN in optical fiber collimator[J]. Journal of Southwest China Normal University (Natural Science Edition), 2004, 29(3): 379-382. http://www.cqvip.com/QK/93403X/200403/9781065.html
[6] Lu Y Q, Palais J C, Chen Y. Coupling efficiency of single-mode fiber components using GRIN-rod lenses[J]. Fiber and Integrated Optics, 1988, 7(2): 85-107. doi: 10.1080/01468038808222978
[7] 肖逾男. 基于DSP芯片的激光多普勒测速仪的研制[D]. 武汉: 武汉大学, 2004: 6-8.
Xiao Y N. Research on an laser Doppler velocimetry based on DSPs[D]. Wuhan: Wuhan University, 2004: 6-8.
[8] Wardell K, Jakobsson A, Nilsson G E. Laser Doppler perfusion imaging by dynamic light scattering[J]. IEEE Transactions on Biomedical Engineering, 1993, 40(4): 309-316. doi: 10.1109/10.222322
[9] Talley D, Fortney D, Fiala N, et al. Gated laser Doppler flowmetry using a proximity-contact probe[C]//Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1988, 4: 1849-1850.
[10] Özdemir S K, Takamiya S, Shinohara S, et al. A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements[J]. Measurement Science and Technology, 2000, 11(10): 1447-1455. https://www.researchgate.net/publication/3849517_Speckle_velocimeter_with_a_self-mixing_laser_diode_optimization_ofmeasurement_system_reproducibility_and_accuracy_of_measurements
[11] Shibata T, Shinohara S, Ikeda H, et al. Laser speckle velocimeter using self-mixing laser diode[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 499-503. doi: 10.1109/19.492775
[12] 杨坤涛, 陈捷.光纤准直器自动调试装配系统的设计[J].光电工程, 2003, 30(2): 36-38, 52. http://www.docin.com/p-511905823.html
Yang K T, Chen J. Design of automatic debugging and assembling system for optic fiber collimator[J]. Opto-Electronic Engineering, 2003, 30(2): 36-38, 52. http://www.docin.com/p-511905823.html
[13] 王素芹, 阮玉, 殷东亮, 等. C-lens准直器回波损耗的理论计算与分析[J].光电子技术与信息, 2003, 16(1): 24-28. https://www.wenkuxiazai.com/doc/51ec3164783e0912a2162ac0...
Wang S Q. Ruan Y, Yin D L, et al. The calculation and analizing of the RL of C-lens collimator[J]. Optoelectronic Technology & Information, 2003, 16(1): 24-28. https://www.wenkuxiazai.com/doc/51ec3164783e0912a2162ac0...
[14] 丁东发, 夏君磊.干涉型光纤传感用光电子器件技术[M].北京:科学出版社, 2012.
[15] 江山, 刘水华, 方罗珍, 等.单模光纤斜面连接的回波损耗[J].光通信研究, 1994(3): 31-37.
Jiang S, Liu S H, Fang L Z, et al. Return loss in single-mode fiber joints with bevelled endface[J]. Study on Optical Communications, 1994(3): 31-37.
[16] 王冠飞. 新型掺铒光纤放大器的研究[D]. 北京: 北京交通大学, 2009: 27-28.
Wang G F. Research in advanced erbium-doped fiber amplifier[D]. Beijing: Beijing Jiaotong University, 2009: 27-28.
http://d.wanfangdata.com.cn/Thesis/Y1578208 -
访问统计