-
Abstract
Laser derusting technology is a new and green rust removing method. For some low carbon steel in an environment prone to rust, traditional rust removing method can be replaced by laser derusting technology, which has broad prospects. The corrosion surface of the laser radiation has the characteristics of high laser energy and short pulse, so that the corrosion temperature quickly reaches above the melting point. But at the same time of laser rust removal, there will be some laser directly through the rust layer, and the laser radiation on the corrosion surface will also transfer part of the energy to the metal substrate surface through heat conduction. By means of experimental analysis on the surface of the metal base, microstructure, mechanical properties and hardness were studied and compared. The results show that the laser derusting process has a good rust removal effect, laser derusting technology does not damage to the metal substrates and the properties of the surface has not been affected.
Keywords
-
1. 引言
近十年来,激光清洗技术凭借其清洗度高、控制性好、绿色环保等优点,在国内外有广阔的应用前景[2-4]。国外激光清洗技术研究起步于上世纪80年代中期,并且逐步将该技术引入一些精密加工领域,例如微电子、半导体原件等,并实现工业化[5]。国内激光清洗技术起步晚,主要是跟踪国外的研究,目前大部分领域还处于实验室阶段,所以将激光清洗技术尽快实现工业化至关重要[6-9]。
低碳钢具有一定的强度,良好的塑形、韧性和可焊接性,综合性能好,能满足一般钢结构的性能要求,而且价格低廉,因此在国内外被广泛应用。但是有些构件所处工作环境比较潮湿,当空气中相对湿度达到一定数值时,空气中含有污染物的水汽会吸附到钢铁材料表面,由于低碳钢主要由Fe和C组成,极易与其表面水汽中的H2O和空气中的O2发生反应,生成Fe的氧化物及其水合物的混合物。表面锈蚀有时会严重影响其使用性能,如导电性,所以在检修时要对构件进行除锈处理。
本文主要针对目前应用广泛的低碳钢材料,研究激光除锈机理,通过实验分析激光除锈后金属基底的性能变化。提出激光除锈的傅里叶热传导模型以及激光除锈的主要机制是烧蚀机制,采用自行研制的IBIS-2型球压法力学性能快速检测装置,对经激光除锈后的低碳钢表面及近表面的力学性能进行表征[10]。
传统除锈方法主要分为化学试剂除锈和机械除锈两大类[1]。化学试剂除锈主要是酸洗除锈,其污染严重而且对母材有一定程度的损伤,应用受到限制。机械除锈主要有两种技术手段,一种是高压水射流除锈,但是容易造成再生锈而且噪声污染大;另一种是喷丸除锈,但是喷砂处理过程噪声和粉尘严重,会引起二次污染,造成工作环境恶劣,严重影响操作者身心健康。因此急需要研究开发一种绿色环保的除锈方法。
2. 激光除锈机理
2.1 激光清洗技术
激光清洗技术主要分为干式激光清洗、湿式激光清洗和等离子体冲击波法三类,如图 1所示[11]。干式激光清洗法的清洗机理为:脉冲激光直接照射基底表面污染物,使其表面温度升高而发生热膨胀,热膨胀使污染物或者基底振动,从而使污染物克服表面吸附力脱离基底表面。湿式激光清洗法的清洗机理为:在脉冲激光作用之前,人为地在待清洗物体表面涂覆一层液膜,液膜在激光照射下急剧受热,产生爆炸性气化,爆炸性冲击波使基底表面的污染物松散,并随冲击波反向离开物体表面,最终达到去污效果。等离子体冲击波法的清洗机理为:激光水平辐射在基底上方,当激光能量达到击穿阈值时就能将环境气体击穿,产生一个近球状的等离子体冲击波,当冲击波传播到基底时,利用冲击波力将基底上的污染物移除[12]。
2.2 机理推导
脉冲激光可以由高斯函数进行描述,在任意一个确定的截面上,振幅的横向分布是高斯型的,在中心轴上,振幅达到极大值;在轴外,振幅随离中心轴距离的平方指数衰减。但是激光清洗中的脉冲激光光斑面积相对于所要清洗的锈蚀面积小很多,而且脉冲激光脉宽短,所以激光在x, y平面的热传导范围很小,可认为在x, y平面内是均匀受热,所以根据傅里叶导热模型[14],可将上式简化为式(4):
当激光辐射到样品锈蚀表面时,假设在笛卡尔坐标系中样品的厚度为L,如图 2所示。在笛卡尔坐标系中,激光辐射在锈蚀表面时的热传导方程为[13]
如果认为锈蚀内部没有体热源函数,所以可将上式简化为
激光清洗技术主要是利用激光辐射到污染物表面,将激光的能量传递到污染物,随着激光功率的增加,当到达污染物的清洗阈值时,污染物颗粒受热膨胀,通过振动机制来克服与金属基底表面的吸附力,进而达到清洗的效果。随着激光能量的继续升高,当温度到达污染物的熔点时,污染物通过烧蚀机制,到达清洗效果。对于激光除锈,由于锈蚀表面疏松多孔,对激光的吸收率很大,所以锈蚀很快到达熔点以上,通过烧蚀机制来到达清洗效果[15]。在低碳钢的激光除锈过程中,表面会产生火花与黄色烟雾,也可验证激光除锈主要通过烧蚀机制。
式中:ρ、c、k分别为锈蚀的密度(和锈蚀等级程度相关)、比热和热传导率,W(x, y, z, t)是锈蚀内的体热源函数。
ρcδT(x,y,z,t)δt=k(∂2T∂x2+∂2T∂y2+∂2T∂z2)+W(x,y,z,t), 式中q为激光的体积能量密度。可将上式采用高斯-赛德尔迭代法进行求解。由于a为锈蚀的导温系数,与锈蚀的致密程度、成分含量等诸多因素相关,所以需要采用实验手段来表征a的数值。
αδT(x,y,z,t)δt=(∂2T∂x2+∂2T∂y2+∂2T∂z2), 定义
α=ρc/k 为材料的导温系数,所以可将上式简化为考虑到湿式激光清洗可能会造成金属基底表面二次氧化生锈,而等离子体冲击波激光清洗效率较低,不适合实现工业化生产,所以本文选用干式激光清洗法进行除锈过程研究。
ρcδT(x,y,z,t)δt=k(∂2T∂x2+∂2T∂y2+∂2T∂z2), {αδTδt=∂2T∂z20≤z≤L,t≥0−αδTδz|z=0=qT(z,t)|t=0=T00≤z≤LδTδz|z=L=0t≥0, 3. 激光除锈后的表面性能
实验采用IPG公司生产的掺镱脉冲光纤激光器,其型号为YLP-1-120-50-50-HC-RG,波长为1064 nm,选用激光填充方式(线型填充)。激光清洗参数描述:选取光斑直径为0.02 mm,离焦量为0,横向和纵向搭接率均为50%,激光功率为10 W,激光重复频率为60 kHz,扫描速度为0.75 m/s,清洗次数为2次,对试样进行激光除锈。将切割好的试样在3.5% NaCl溶液中浸泡120 h后风干,利用千分尺测得锈蚀厚度的平均值为70mm。试样经激光除锈前后的效果对比,如图 3所示。
由于锈蚀表面疏松多孔,致密度不高,所以在激光清洗的同时会有部分激光透过锈蚀与金属基底直接作用,同时锈蚀的热传导也会对金属基底有一定的影响[16]。在达到清洗效果的同时也要确保对金属基底没有损伤,所以采用实验分析手段对激光清洗好的低碳钢与原始状态的试样进行表面性能对比研究。
3.1 表面除锈效果
低碳钢表面锈蚀主要是由Fe的氧化物及其水合物的混合物组成,选用表面氧元素含量能够有效的表征除锈效果。采用INSPECT F50场发射扫描电镜,对经激光除锈前后试样的氧元素含量进行能谱分析,氧元素含量如图 4所示。结果表明,经激光除锈后试样表面氧元素含量明显降低,到达除锈效果。
3.2 表面粗糙度
为了表征激光除锈后试样表面的平整度,对激光除锈后的试样和原始试样表面的粗糙度进行测量,测量结果如图 5所示。结果表明,激光除锈后试样表面的粗糙度略高于原始试样。因为激光除锈技术是通过调节激光能量密度等清洗参数,使辐射到污染物表面的激光能量大于污染物的清洗阈值,小于金属基底的损伤阈值,所以在保证对金属基底没有损伤的前提下,生锈的试样表面经激光除锈后会有腐蚀坑的存在。
3.3 微观组织
由于激光清洗的同时会有部分激光透过锈蚀与金属基底直接作用,同时锈蚀的热传导也会对金属基底有一定的影响。这些能量会使金属基底表面温度升高,可能会引起金属基底表面重熔,采用INSPECT F50场发射扫描电镜,对经激光除锈后的试样截面进行观察,如图 6所示,发现激光除锈后的金属基底表面没有发生重熔。
虽然金属基底表面没有重熔,但是由于激光能量高,脉冲短,经过热传导后金属基底可能会达到相变点,使组织发生变化,采用蔡司Observer.Z1m金相显微镜对原始试样和激光除锈后的试样进行显微组织的观察,结果如图 7所示。金属基底在室温条件下,显微组织主要由铁素体和珠光体组成,经过激光除锈后金属基底的显微组织没有发生明显变化。
3.4 力学性能
Detection point number Yield strength/MPa Tensile strength/MPa n Elongation/(%) 1 214 473 0.24 33.5 2 198 455 0.26 28.6 3 205 482 0.23 32.5 4 264 450 0.18 24.8 5 275 458 0.17 20.3 Average value 231 463 0.22 27.9 Detection point number Yield strength/MPa Tensile strength/MPa n Elongation/(%) 1 231 486 0.22 30.5 2 240 496 0.25 28.6 3 225 472 0.18 25.2 4 262 452 0.19 20.5 5 211 440 0.26 21.2 Average value 233 469 0.22 21.1 激光除锈对金属基底的影响深度很小,如果采用传统的拉伸试验,不能很好地表征材料表面及近表面的力学性能。采用自行研制的IBIS-2型球压法力学性能快速检测装置,通过监测在材料表面施加压痕过程中的载荷和位移值变化关系,获得被测材料的载荷-位移曲线(P-h曲线),通过特殊算法,得到被测材料的弹性模量、屈服强度、抗拉强度、应变硬化指数以及延伸率等多种力学性能参数,能够有效地表征金属材料表面100mm范围内的力学性能[10]。
表 1和表 2的结果表明原始试样和经激光除锈后的试样力学性能没有发生明显变化。
采用IBIS-2型装置对原始试样和经激光除锈后的试样进行力学性能表征的结果如表 1和表 2所示。
3.5 硬度
由于激光除锈对金属基底的影响深度很小,如果采用显微硬度仪,需要对试样表面进行抛光处理,很可能把试样表面的影响层处理掉。考虑到对试样表面的硬度进行测量,首先选用时代里氏硬度计C型压头对试样表面进行里氏硬度测量,球头直径为3 mm,冲击体质量为20 g,数据结果如图 8所示。根据图 8可以看出,激光除锈前后试样表面硬度没有发生明显的变化。
为了确保实验的正确性,又采用HR15T洛氏表面硬度仪,载荷为10 kg,压痕深度大约在16mm左右,对原始试样和激光除锈后的试样进行硬度表征,结果如图 9所示。根据图 9可以看出,经激光除锈后试样表面硬度略有提高,但是变化不明显。
3.6 抗腐蚀性能
对原始试样和经激光除锈后的试样表面进行抗腐蚀性能表征,采用PARSTAT4000环氧树脂将试样没有经激光除锈的其它三个表面密封,把试样与金属导线连接,然后接入金属电极,置于3.5%的NaCl溶液,放入电化学工作站中并通电。表征结果如图 10所示,可以看出经激光除锈后的试样抗腐蚀性能略有降低,但是不明显。
3.7 总结
采用激光除锈洗技术对低碳钢表面进行激光除锈,通过氧元素含量来表征除锈效果,在达到清洗效果的同时,对原始试样和经激光除锈后的试样表面性能进行对比研究。通过对比原始试样和经激光除锈后试样表面的粗糙度、微观组织、力学性能、硬度、抗腐蚀性能,结果表明低碳钢表面腐蚀污渍被去除后,激光与基体的作用对基体本身以及基体表面无明显影响。
4. 结论
1) 激光辐射到锈蚀表面,由于激光光斑面积相对于所要清洗的锈蚀面积小很多,而且脉冲激光脉宽短,所以激光在平面方向的热传导范围很小,可认为在平面内是均匀受热,所以采用傅里叶导热模型来表征锈蚀表面热传导。
3) 由于激光对金属基底的影响深度小,采用自行研制的IBIS-2型球压法力学性能快速检测装置来表征经激光除锈表面的力学性能,采用时代里氏硬度计C型压头和表面洛氏硬度计对比硬度变化特性以及采用极化曲线表征抗腐蚀性能,结果证明采用优化的激光清洗参数对低碳钢除锈,对金属基底没有造成损伤,对金属基底表面性能没有产生显著影响。
2) 由于锈蚀表面疏松多孔,致密度低,对激光吸收率大,同时脉冲激光能量高,脉冲短,所以锈蚀表面温度能够很快达到其熔点,通过烧蚀机制来达到除锈效果。
-
References
解宇飞, 刘洪伟, 胡永祥.船舶板材激光除锈工艺参数确定方法研究[J].中国激光, 2016, 43(4): 0403008.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201604016&dbname=CJFD&dbcode=CJFQXie Yufei, Liu Hongwei, Hu Yongxiang. Determining process parameters for laser derusting of ship steel plates[J]. Chinese Journal of Lasers, 2016, 43(4): 0403008.
http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201604016&dbname=CJFD&dbcode=CJFQTam A C, Park H K, Grigoropoulos C P. Laser cleaning of surface contaminants[J]. Applied Surface Science, 1998, 127–129: 721–725.
DOI: 10.1016/S0169-4332(97)00788-5Koh Y S, Powell J, Kaplan A, et al. Laser cleaning of corroded steel surfaces: a comparison with mechanical cleaning meth-ods[M]//Nimmrichter J, Kautek W, Schreiner M. Lasers in the Conservation of Artworks. Berlin Heidelberg: Springer, 2007: 13–20.
Lu Y F, Song W D, Hong M H, et al. Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning[J]. Applied Physics A, 1997, 64(6): 573–578.
DOI: 10.1007/s003390050518Li Xiaoguang, Huang Tingting, Chong Angwei, et al. Laser cleaning of steel structure surface for paint removal and repaint adhesion[J]. Opto-Electronic Engineering, 2017, 44(3): 340–344.
http://cn.bing.com/academic/profile?id=9208ef6c5cb06805ea3558d746549686&encoded=0&v=paper_preview&mkt=zh-cnChen G X, Kwee T J, Tan K P, et al. Laser cleaning of steel for paint removal[J]. Applied Physics A, 2010, 101(2): 249–253.
DOI: 10.1007/s00339-010-5811-0View full references list -
Cited by
Periodical cited type(27)
Other cited types(20)
-
Author Information
-
Copyright
The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work. -
About this Article
Cite this Article
Zhiguo Ren, Changzhong Wu, Huaining Chen, Ying Lu, Hongchao Qiao, Taiyou Hu. Mechanism of laser derusting and surface properties of low carbon steel. Opto-Electronic Engineering 44, 1210-1216 (2017). DOI: 10.3969/j.issn.1003-501X.2017.12.009Download CitationArticle History
- Received Date September 22, 2017
- Revised Date November 19, 2017
- Published Date December 14, 2017
Article Metrics
Article Views(11516) PDF Downloads(4403)