Research status and development prospects of laser welding under vacuum
  • Abstract

    Compared with conventional laser welding, the welding quality was improved significantly while the laser welding was conducted under vacuum. The penetration depth of the weld seam increased sharply. The welding formation was improved and the porosity defects were suppressed effectively. In recent years, numerous researches on the mechanism of welding process, low vacuum and local subatmospheric pressure laser welding equipments have been undertaken. The laser welding under vacuum exhibits the wonderful application prospects to weld the thick plates in the shipbuilding, nuclear instrument and pressure vessel industries. The influences of ambient pressure on the laser welding penetration depth, surface formation and porosity defect were summarized. The domestic and overseas research findings on mechanism of laser welding under vacuum were elaborated from the aspects of plasma plume, keyhole and molten pool behaviors. In addition, the applications of laser welding under vacuum in the industry were introduced. Finally, the problems of reported researches were analyzed and the prospects of the technology were discussed.

    Keywords

  • 激光焊接由于其能量密度大自动化程度高,具备高质量、低变形、高精度、高效率及高柔性等特点,已被广泛应用于航空航天、核电、船舶、汽车、电子等领域,并被称为“21世纪最有发展潜力的高效智能化焊接方法之一”。近年来,随着大功率、高光束质量激光器制造技术的快速发展,其在船舶、核电、压力容器等工业领域厚板深熔焊方面的应用备受关注。但是,大功率激光焊接过程中,等离子体羽辉对激光的屏蔽作用增强,一方面,致密等离子体羽辉对激光的吸收和散射降低了激光能量的传输效率;另一方面,致密等离子体羽辉对激光的折射影响焊缝的成形。此外,铝合金材料激光深熔焊过程中匙孔的不稳定性和熔池的流动行为对焊缝气孔的影响也是学者们的研究焦点。

    近年来有研究表明,在真空环境下,激光焊缝的熔深显著增大,焊缝气孔缺陷和焊缝成形得到极大的改善。日本的大阪大学,国内的哈尔滨工业大学、上海交通大学、华中科技大学、西北工业大学等单位研究了不锈钢、铝合金和高温合金等材料在真空环境下激光焊接成形特性。基于等离子体形貌及物理特性分析了真空环境下激光能量的传输特性,解释了焊缝熔深增大的原因。基于图像监测、数值模拟的方法分析了环境压力对激光深熔焊过程中匙孔及熔池动态行为的影响。

    3) 改变保护气成分(采用He和Ar混合保护气)[],采用He和Ar混合保护气时,等离子羽辉的温度相比纯Ar气时有明显的降低,He气的加入对等离子体羽辉有一定的抑制作用;

    2) 摆动激光法[],通过激光束沿焊接方向上的来回摆动可有效“规避”等离子体羽辉;

    4) 加侧吹气流[],采用侧吹保护气的方法可以吹散部分等离子体,降低等离子体对激光的折射效应,提高激光能量的传输效率;

    目前,学者们抑制等离子体羽辉采取的方法有:

    1) 脉冲激光法[],调整脉冲激光的工艺参数,使脉冲激光作用于等离子体消散时,抑制等离子体对激光的屏蔽作用;

    上述方法虽然在一定程度上增大了激光深熔焊过程中能量的传输效率,但是针对铝合金等材料,对熔深的增大及焊缝成形的改善效果并不明显。

    5) 外加电磁场[, ],激光焊接过程中,外加适当的电磁场可以有效“驱散”等离子体,增大激光能量的吸收率。

    本文首先简要概述真空激光焊接特性,包括环境压力变化对焊缝熔深、焊缝表面成形及气孔等缺陷的影响规律,从焊接过程等离子体羽辉及匙孔、熔池的动态行为特性方面总结国内外学者有关真空激光焊接机理的研究成果,并介绍了真空焊接技术在工业领域的应用情况,最后对目前已报道的研究中存在的问题进行分析及真空焊接技术的发展前景进行展望。

    Figure 3. Cross-sections of laser welds in stainless steel undervacuum (0.1 kPa)[10]. (a) Defocused distance of-40 mm. (b) Defocused distance of +20 mm.
    Full-Size Img PowerPoint

    Cross-sections of laser welds in stainless steel undervacuum (0.1 kPa)[]. (a) Defocused distance of-40 mm. (b) Defocused distance of +20 mm.

    通用中国科学研究院Yang[]采用局部真空辅助激光焊的方法得到汽车用镀锌钢板无间隙搭接的高质量接头。焊接过程中匙孔保持敞开且更加稳定有助于锌蒸汽及时逸出,此外,等离子体羽辉偏向局部真空的抽气装置,有助于提高熔池的稳定性及激光能量的吸收率。

    大阪大学Arata[]在1985年率先开展真空激光焊接的研究,作者发现随着环境压力的减小,钢的激光焊熔深显著增大,当环境压力为10-3 Torr(约0.1 Pa),激光功率为11 kW,焊接速度为10 cm/min时,焊缝熔深可达到40 mm,如图 1所示。基于高速摄像和X射线透射结果可知,低真空环境下(低于几Torr)激光致等离子体几乎完全被抑制,并且匙孔特征与电子束焊接几乎相同。此后真空激光焊接技术的研究未见报道,直到2001年,大阪大学Katayama[]研究了环境压力为30 Pa~30000 Pa时不锈钢和铝合金的激光焊接特性,同样,作者发现随着环境压力的减小,焊缝的熔深增大,熔宽变小。

    Figure 5. The plasma plume area as a function of vacuum degree[13].
    Full-Size Img PowerPoint

    The plasma plume area as a function of vacuum degree[].

    但是,在真空舱内焊接无法满足大尺寸结构件的焊接要求。基于临界低真空的观点,上海交通大学唐新华[-]设计了局部“真空室”,如图 6所示,通过快速抽气在密封腔内产生局部的负压,可使焊接工件熔池上方局部范围内达到低真空。作者通过试验发现当环境压力达到20 kPa时,激光焊缝的熔深会突然增大,并且焊缝的熔深随着局部“真空室”内的压力的减小呈现指数型增大的规律。但是焊接过程中局部“真空室”的移动会导致内部压力的增大,作者对比激光点焊和和连续焊(局部“真空室”随激光头一起运动)焊缝成形发现,连续焊的熔深较点焊有所减小,这是因为缝焊过程中,局部“真空室”的移动造成漏气现象从而导致气压的增大[, ]

    Figure 1. The penetration depth of laser welding underlow vacuum[7].
    Full-Size Img PowerPoint

    The penetration depth of laser welding underlow vacuum[].

    从Katayama的试验结果可以看出,真空环境下激光焊缝的熔深并非随环境压力的减小线性增大,而是当环境压力低于某一数量级时,焊缝熔深大小趋于稳定,即真空度对焊缝成形和质量的影响存在临界值,德国学者Borner[]也发现同样的现象,但是作者并没有对此进行深入的研究。哈尔滨工业大学李俐群[, ]自主研制一套可实现高真空环境的装置(极限真空度可达到10-4 Pa数量级),并对真空激光焊接的极限真空度展开系统的研究,作者首先研究了铝合金激光焊缝熔深随焊接环境压力的变化规律,发现当环境压力低于101 Pa时,焊缝熔深基本不再发生变化,如图 4所示。并且作者也认为焊缝熔深的变化与光致等离子体羽辉特性有关,并观察了铝合金、钛合金、镍基合金和不锈钢真空激光焊接过程中等离子羽辉形貌,发现当舱内压力低于101 Pa时,等离子体羽辉的截面面积变化不明显,如图 5所示。作者认为真空激光焊接存在临界真空度,不需要极高的真空度就可以获得熔深较大且气孔缺陷极少的焊缝,并且材料的种类和激光参数对临界真空度的影响不大。

    低真空环境下,激光焊接的熔深可大幅增大,在实现大厚板的深熔焊接方面展现出较强的优势。Katayama[, ]在2011年建立一套可实现大功率真空激光焊接的装置,如图 2所示,真空舱内压力可达到0.1 kPa,组合两台YAG激光器使激光输出功率最大可达26 kW,通过对不锈钢进行真空激光焊接试验(环境压力为0.1 kPa),发现焊缝熔深最大可达到73 mm,如图 3所示。当激光功率较大为16 kW时,环境压力降低可以有效抑制焊缝表面的飞溅缺陷,但是,当环境压力低于1 kPa时,焊缝出现驼峰缺陷。

    西北工业大学包海涛[, ]对真空环境下不锈钢和镁合金的激光焊缝缺陷和力学性能进行了研究,发现真空环境下镁合金激光焊缝的裂纹缺陷得到有效控制,并且与大气环境下得到的焊缝相比,真空环境下焊缝中心附近位置的显微硬度值有所增大,这主要是因为真空环境下等离子羽辉得到抑制,等离子体的热转导作用减弱,焊缝晶粒未明显长大。

    Figure 2. Vacuum equipment for high-power laser welding[9]. (a) Schematic diagram. (b) Photo image of the vacuum chamber.
    Full-Size Img PowerPoint

    Vacuum equipment for high-power laser welding[]. (a) Schematic diagram. (b) Photo image of the vacuum chamber.

    Figure 6. Photo images of local subatmospheric equipment for laser welding[14]. (a) Overall image. (b) Structure image (1. local subatmospheric module; 2. conical orifice; 3. fixed module; 4. air knife; 5. optical lens).
    Full-Size Img PowerPoint

    Photo images of local subatmospheric equipment for laser welding[]. (a) Overall image. (b) Structure image (1. local subatmospheric module; 2. conical orifice; 3. fixed module; 4. air knife; 5. optical lens).

    Figure 4. The influences of ambient pressure on the penetrationdepth of laser welded aluminum alloys[12].
    Full-Size Img PowerPoint

    The influences of ambient pressure on the penetrationdepth of laser welded aluminum alloys[].

    Figure 8. Flow behavior and formation of porosity defectunder atmospheric pressure [8].
    Full-Size Img PowerPoint

    Flow behavior and formation of porosity defectunder atmospheric pressure [].

    学者们普遍认为真空环境下激光焊接熔深增大的一个主要原因是等离子体羽辉得到有效抑制。日本大阪大学Katayama[, , ]通过观察探测激光穿过等离子体羽辉后光斑位置及折射角的变化(如图 7所示),认为真空环境下焊接激光束与等离子体羽辉的相互作用减弱是熔深增大的原因,并且真空环境下焊接飞溅得到有效抑制,匙孔的开口尺寸减小且更加稳定。

    法国Fabbro和国内华中科技大学庞盛永[-]对匙孔壁蒸汽反作用力计算模型进行改进,首次计算了环境压力对激光深熔焊过程中匙孔动态行为的影响。作者发现真空环境下匙孔壁的平均温度较大气环境下有所降低,如图 10所示,导致真空环境下焊缝熔深增大。并且作者认为匙孔表面温度的不同会影响匙孔附近液态金属的流动行为,相比之下,大气环境下匙孔壁温度较高导致匙孔附近热传输作用明显使熔池流动行为更加复杂,从而使焊缝截面形貌发生变化,如图 11所示。此外,作者还发现随着焊接速度的增大,真空环境下焊缝的熔深的增大幅度逐渐变小,这是因为随着焊接速度的增大匙孔壁的温度升高。当焊接速度较高(6 m/min)时,真空环境下焊缝熔深和大气环境下趋于一致,这是因为高速焊接时,环境压力的变化不会改变金属的蒸发温度[]

    基于等离子体的光谱结果及理论计算,法国Fabbro[]和国内哈尔滨工业大学李俐群[, , ]分析了真空激光焊接过程中等离子体羽辉的物理特性,激光焊接过程中等离子体的电子密度由环境压力所决定,等离子体的电子密度随着环境压力的降低而减小,等离子体对产生的透镜效应及对激光能量的逆韧制吸收可完全被抑制,激光能量的吸收模式以菲涅尔吸收为主,大气环境下激光焊缝的“钉子状”截面形状消失,熔宽变小,熔深变大。上海交通大学唐新华[, ]分析不同环境压力下探测激光透过等离子体羽辉的光谱结果,建立探测激光衰减的三维分布规律,由此得到了环境压力与等离子体羽辉被抑制的关系,即等离子体外侧扩散型羽辉、中部压缩型羽辉和匙孔附近驻留型羽辉被完全抑制时对应的压力值分别为80 kPa、20 kPa和3 kPa。

    Figure 10. Longitudinal distribution of transient temperature during laser welding process (t=31.5 ms)[26]. (a) Under vacuum. (b) Underatmospheric pressure.
    Full-Size Img PowerPoint

    Longitudinal distribution of transient temperature during laser welding process (t=31.5 ms)[]. (a) Under vacuum. (b) Underatmospheric pressure.

    Figure 7. The characteristics of probe laser through the plasma plume. (a) Schematic diagram of equipment[21]. (b) Change of spotpositions and refracted angles[9].
    Full-Size Img PowerPoint

    The characteristics of probe laser through the plasma plume. (a) Schematic diagram of equipment[]. (b) Change of spotpositions and refracted angles[].

    焊缝成形良好及气孔缺陷消失与匙孔的稳定性及熔池的流动行为密切相关。日本大阪大学Katayama[]发现环境压力减小后焊缝的气孔缺陷得到有效改善,当环境压力为400 Pa时,在不锈钢和铝合金焊缝中均未观察到气孔,作者首次通过X射线透射系统观察了真空激光焊接过程中匙孔及熔池的动态行为,发现与大气环境下不同,当环境压力为400 Pa时,在匙孔的尖端并未发现气泡的产生,并且熔池液态金属沿着匙孔壁向上流动(大气环境下液态金属沿着熔池底部向后方流动,如图 8所示),有助于气泡快速逸出熔池,如图 9所示。

    上海交通大学唐新华[]从一侧透明玻璃观察了真空焊接过程中小孔内壁的动态行为,发现随着环境压力的降低,匙孔的深度增大,匙孔后壁上由于匙孔内局部不稳定的金属蒸汽产生的不稳定波动得到改善,当环境压力低于10 kPa时,匙孔后壁变得平滑且稳定,从而可以有效抑制气孔缺陷的产生。

    Figure 9. Flow behaviors of molten pool during laser welding process under vacuum[8].
    Full-Size Img PowerPoint

    Flow behaviors of molten pool during laser welding process under vacuum[].

    Figure 11. Cross-sections of laser welds[26]. (a) Under vacuum. (b) Under atmospheric pressure.
    Full-Size Img PowerPoint

    Cross-sections of laser welds[]. (a) Under vacuum. (b) Under atmospheric pressure.

    Figure 12. Laser welding equipment with vacuum chamber[29]. (a) Laser head. (b) Vacuum chamber. (c) Pumping station.
    Full-Size Img PowerPoint

    Laser welding equipment with vacuum chamber[]. (a) Laser head. (b) Vacuum chamber. (c) Pumping station.

    Figure 14. Laser welding of planet wheel carrier under vacuum[30]. (a) Schematic diagram of welding position. (b) Cross-section of weld seam.
    Full-Size Img PowerPoint

    Laser welding of planet wheel carrier under vacuum[]. (a) Schematic diagram of welding position. (b) Cross-section of weld seam.

    Figure 13. Laser welding equipment with laser beam in vacuum manufactured by PTR GmbH[30].
    Full-Size Img PowerPoint

    Laser welding equipment with laser beam in vacuum manufactured by PTR GmbH[].

    德国Borner[]自制一套真空激光焊接设备,如图 12所示,真空舱尺寸为1.5 m3,极限真空度可以达到10-1 Pa,作者对3 mm,10 mm和15 mm不同厚度的钢的真空激光焊接特性进行研究,发现焊接过程飞溅缺陷得到有效抑制,焊缝的几何形状得到改善。作者认为真空环境下激光焊缝质量得到有效改善,拓宽了大功率固态激光器在工业领域的应用范围。

    2015年,德国PTR公司[]与亚琛工业大学合作开发了一套真空激光焊接设备,激光头置于真空舱内部,如图 13所示。将真空激光焊接技术应用于电站大型齿轮焊接上,获得了表面光滑、无缺陷的焊缝,如图 14所示。该研究为真空激光焊接技术在工业领域的应用提供宝贵的参考。

    1) 有关真空环境下激光能量传输特性的研究,还需考虑真空环境下材料物性的变化、离子碰撞特性对等离子体羽辉团聚及扩散的影响。需借助图像在线监测、数值模拟、匙孔壁受力理论分析等方法系统的研究真空环境下熔池传热传质特性,并进一步阐明真空环境下焊缝金属的凝固行为。

    但是目前对真空环境下激光能量传输特性的研究尚不完善。对于真空环境下熔池液态金属流动行为发生改变缺乏科学的解释。真空激光焊接时,合金元素的蒸发、熔池液态金属的流动行为对焊缝金属凝固特性及接头性能的影响也有待进一步明确。在工程应用方面,真空激光焊缝“窄而深”的特点对工件装配的适应性较差,对真空激光焊接在工业领域的广泛应用有一定的限制。

    2) 真空或局部真空装置应向高适应性和高度集成化的方向发展。针对大尺寸复杂结构件的焊接,需研制保压性能更好且结构适应性强的局部真空装置。并且,要在真空环境下实现激光填丝甚至激光复合焊接,对真空焊接舱或局部真空装置的设计和制造提出了更高的要求。

    未来真空焊接技术的发展需要从以下方面突破:

    自1985年提出真空激光焊接技术以来,学者们普遍发现在低真空或者局部负压环境下,激光焊接焊缝熔深得到大幅提高,焊接过程飞溅及焊缝气孔等缺陷得到有效改善,并且环境压力对激光焊缝熔深及缺陷的影响存在临界值。真空环境下焊接特性的变化与等离子行为及熔池流动行为密切相关。随着大型真空舱及局部真空装置的出现,真空激光焊接技术已在电站大型齿轮焊接中得到应用,并在船舶、核电、压力容器等工业领域大厚板焊接中展现出较强的应用前景。

  • References

    Ishide T, Shono S, Ohmae T, et al. Fundamental study of laser plasma reduction method in high power CO2 laser welding[C]//Proceedings of the International Conference on Laser Materials Processing-Science and Application, Osaka, Japan, 1987: 187-191.

    Google Scholar

    Arata Y, Abe N, Oda T. Fundamental phenomena in high power CO2 laser welding[J]. Transactions of JWRI, 1985, 14(1): 5-11.

    https://core.ac.uk/display/38189589

    Google Scholar

    Beck M, Berger P, Hugel H. The effect of plasma formation on beam focusing in deep penetration welding with CO2 Lasers[J]. Journal of Physics D: Applied Physics, 1995, 28(12): 2430-2442.

    DOI: 10.1088/0022-3727/28/12/007

    CrossRef Google Scholar

    Wang C M, Meng X X, Huang W, et al. Role of side assisting gas on plasma and energy transmission during CO2 laser welding[J]. Journal of Materials Processing Technology, 2011, 211(4): 668-674.

    DOI: 10.1016/j.jmatprotec.2010.12.001

    CrossRef Google Scholar

    Tse H C, Man H C, Yue T M. Effect of magnetic field on plasma control during CO2 laser welding[J]. Optics & Laser Technology, 1999, 31(5): 363-368.

    http://cn.bing.com/academic/profile?id=71e9cd76a7f7c24a27762e04bf8b381e&encoded=0&v=paper_preview&mkt=zh-cn

    Google Scholar

    Peng Yun, Chen Wuzhu, Wang Cheng, et al. Controlling the plasma of deep penetration laser welding to increase power efficiency[J]. Journal of Physics D: Applied Physics, 2001, 34(21): 3145-3149.

    DOI: 10.1088/0022-3727/34/21/307

    CrossRef Google Scholar

    View full references list
  • Cited by

    Periodical cited type(5)

    1. 郑震旦,张帅锋,武少杰,龚宝明,邓彩艳,程方杰. 厚壁钛合金构件焊接工艺研究进展. 材料开发与应用. 2024(06): 24-34 .
    2. 黄瑞生,方乃文,武鹏博,徐锴,秦建,赵德民,曾才有,周坤. 厚壁钛合金熔化焊接技术研究现状. 电焊机. 2022(06): 10-24 .
    3. 巴一,师文庆,韩善果,黄进钰,黄江,谢玉萍,何宽芳. 不同离焦量对真空激光焊接TA2工业钛板的影响. 应用激光. 2021(03): 481-488 .
    4. 冯学敏. 基于PLC的汽车车身激光焊接控制系统. 激光杂志. 2020(08): 214-218 .
    5. 邹江林,王利达,祝宝琦,肖荣诗,武强,郑凯. 光纤激光-TIG电弧复合焊接等离子体形态的可视化观察. 中国激光. 2019(12): 110-116 .

    Other cited types(3)

  • Author Information

  • Copyright

    The copyright belongs to the Institute of Optics and Electronics, Chinese Academy of Sciences, but the article content can be freely downloaded from this website and used for free in academic and research work.
  • About this Article

    DOI: 10.3969/j.issn.1003-501X.2017.10.001
    Cite this Article
    Cai Chuang, Chen Hui, Zhang Weihua. Research status and development prospects of laser welding under vacuum. Opto-Electronic Engineering 44, 945-952 (2017). DOI: 10.3969/j.issn.1003-501X.2017.10.001
    Download Citation
    Article History
    • Received Date August 20, 2017
    • Revised Date September 17, 2017
    • Published Date October 14, 2017
    Article Metrics
    Article Views(14184) PDF Downloads(5149)
    Share:
  • Related Articles

Ishide T, Shono S, Ohmae T, et al. Fundamental study of laser plasma reduction method in high power CO2 laser welding[C]//Proceedings of the International Conference on Laser Materials Processing-Science and Application, Osaka, Japan, 1987: 187-191.

Google Scholar

Arata Y, Abe N, Oda T. Fundamental phenomena in high power CO2 laser welding[J]. Transactions of JWRI, 1985, 14(1): 5-11.

https://core.ac.uk/display/38189589

Google Scholar

Beck M, Berger P, Hugel H. The effect of plasma formation on beam focusing in deep penetration welding with CO2 Lasers[J]. Journal of Physics D: Applied Physics, 1995, 28(12): 2430-2442.

DOI: 10.1088/0022-3727/28/12/007

CrossRef Google Scholar

Wang C M, Meng X X, Huang W, et al. Role of side assisting gas on plasma and energy transmission during CO2 laser welding[J]. Journal of Materials Processing Technology, 2011, 211(4): 668-674.

DOI: 10.1016/j.jmatprotec.2010.12.001

CrossRef Google Scholar

Tse H C, Man H C, Yue T M. Effect of magnetic field on plasma control during CO2 laser welding[J]. Optics & Laser Technology, 1999, 31(5): 363-368.

http://cn.bing.com/academic/profile?id=71e9cd76a7f7c24a27762e04bf8b381e&encoded=0&v=paper_preview&mkt=zh-cn

Google Scholar

Peng Yun, Chen Wuzhu, Wang Cheng, et al. Controlling the plasma of deep penetration laser welding to increase power efficiency[J]. Journal of Physics D: Applied Physics, 2001, 34(21): 3145-3149.

DOI: 10.1088/0022-3727/34/21/307

CrossRef Google Scholar

Arata Y, Abe N, Oda T. Fundamental phenomena in high power CO2 laser (Report II): vacuum laser welding[J]. Transactions of JWRI, 1985, 14(2): 217-222.

https://www.researchgate.net/publication/279582069_FUNDAMENTAL_PHENOMENA_IN_HIGH_POWER_CO2_LASER_REPORT_II_-_VACUUM_LASER_WELDING

Google Scholar

Katayama S, Kobayashi Y, Mizutani M, et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications, 2001, 13(5): 187-192.

DOI: 10.2351/1.1404413

CrossRef Google Scholar

Katayama S, Abe Y, Mizutani M, et al. Deep penetration welding with high-power laser under vacuum[J]. Transactions of JWRI, 2011, 40(1): 15-19.

http://www.jwri.osaka-u.ac.jp/publication/trans-jwri/pdf/401-03.pdf

Google Scholar

Katayama S, Youhei A, Mizutani M, et al. Development of deep penetration welding technology with high brightness laser under vacuum[J]. Physics Prodedia, 2011, 12: 75-80.

DOI: 10.1016/j.phpro.2011.03.010

CrossRef Google Scholar

Börner C, Dilger K, Rominger V, et al. Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser[C]//Proceedings of the 30th International Congress on Applications of Lasers & Electro-Optics, Orlando, FL, USA, 2011: 621-629.

Google Scholar

Cai C, Peng G C, Li L Q, et al. comparative Study on Laser Welding Characteristics of Aluminium Alloy under Atmospheric and Subatmospheric Pressures[J]. Science and Technology of Welding and Joining, 2014, 19(7): 547-553.

DOI: 10.1179/1362171814Y.0000000223

CrossRef Google Scholar

彭根琛. 铝与镍合金的真空环境激光焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 28-44.

Peng Genchen. Laser welding characteristics of aluminum and nickel-base alloys under vacuum environment[D]. Harbin: Harbin Institute of Technology, 2015: 28-44.

Google Scholar

罗燕. 负压激光焊接过程蒸气羽烟及熔池行为研究[D]. 上海: 上海交通大学, 2015: 32-33.

Luo Yan. Research on plasma plume and molten pool behavior in fiber laser welding under subatmospheric pressure[D]. Shanghai: Shanghai Jiao Tong University, 2015: 32-33.

Google Scholar

Chen Qintao, Tang Xinhua, Lu Fenggui, et al. Study on the effect of laser-induced plasma plume on penetration in fiber laser welding under subatmospheric pressure[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(1-4): 331-339.

DOI: 10.1007/s00170-014-6634-5

CrossRef Google Scholar

Luo Yan, Tang Xinhua, Lu Fenggui, et al. Experimental study on deep penetrated laser welding under local subatmospheric pressure[J].The International Journal of Advanced Manufacturing Technology, 2014, 73(5-8): 699-706.

DOI: 10.1007/s00170-014-5870-z

CrossRef Google Scholar

罗燕, 唐新华, 芦凤桂, 等.局部负压激光焊缝成形特点及其影响因素[J].中国激光, 2014, 41(6): 0603008.

http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201406018&dbname=CJFD&dbcode=CJFQ

Luo Yan, Tang Xinhua, Lu Fenggui, et al. Effects of welding parameters on bead formation of laser welding under subatmospheric pressures[J]. Chinese Journal of Lasers, 2014, 41(6): 0603008.

http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz201406018&dbname=CJFD&dbcode=CJFQ

Google Scholar

Yang S, Wang J, Carlson B E, et al. Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration[J]. Welding Journal, 2013, 92(7): 197-s-204-s.

https://www.researchgate.net/publication/271763988_Vacuum-Assisted_Laser_Welding_of_Zinc-Coated_Steels_in_a_Gap-Free_Lap_Joint_Configuration

Google Scholar

包海涛, 刘金合, 刘锟, 等.真空激光焊接工艺参数对AZ31镁合金熔深的影响及缺陷分析[J].应用激光, 2008, 28(5): 366-370.

http://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200805005.htm

Bao Haitao, Liu Jinhe, Liu Kun, et al. Effect of vacuum laser welding parameter on AZ31 magnesium alloy penetration and flaw analysing[J]. Applied Laser, 2008, 28(5): 366-370.

http://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200805005.htm

Google Scholar

包海涛, 刘金合, 刘锟, 等.低功率YAG激光真空焊接工艺[J].航空制造技术, 2008(23): 92-95.

DOI: 10.3969/j.issn.1671-833X.2008.23.018

Bao Haitao, Liu Jinhe, Liu Kun, et al. Low-power YAG laser welding process under vacuum condition[J]. Aeronautical Manufacturing Technology, 2008(23): 92-95.

DOI: 10.3969/j.issn.1671-833X.2008.23.018

CrossRef Google Scholar

Youhei A, Yousuke K, Hiroshi N, et al. Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminium alloy with high power and high brightness laser[J]. Science and Technology of Welding and Joining, 2014, 19(4): 324-332.

DOI: 10.1179/1362171813Y.0000000182

CrossRef Google Scholar

Verwaerde A, Fabbro R, Deshors G. Experimental study of continuous CO2 laser welding at subatmospheric pressures[J]. Journal of Applied Physics, 1995, 78(5): 2981-2984.

DOI: 10.1063/1.360046

CrossRef Google Scholar

姜梦. 真空环境下激光焊接等离子体特性研究[D]. 哈尔滨: 哈尔工业大学, 2015: 37-48.

Jiang Meng. Study on the characteristics of plasma in laser welding under vacuum conditions[D]. Harbin: Harbin Institute of Technology, 2015: 37-48.

Google Scholar

姜梦, 陶汪, 陈彦宾, 等.真空激光焊接焊缝成形及等离子体特征[J].中国激光, 2016, 43(4): 0403010.

http://www.opticsjournal.net/Abstract.htm?id=OJ160329000031gMjPlS

Jiang Meng, Tao Wang, Chen Yanbin, et al. Characteristics of bead formation and plasma plume in fiber laser welding under vacuum[J]. Chinese Journal of Lasers, 2016, 43(4): 0403010.

http://www.opticsjournal.net/Abstract.htm?id=OJ160329000031gMjPlS

Google Scholar

Luo Yan, Tang Xinhua, Lu Fenggui, et al. Spatial distribution characteristics of plasma plume on attenuation of laser radiation under subatmospheric pressure[J]. Applied Optics, 2015, 54(5): 1090-1096.

DOI: 10.1364/AO.54.001090

CrossRef Google Scholar

Pang Shengyong, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007.

DOI: 10.2351/1.4913455

CrossRef Google Scholar

Pang Shengyong, Chen Xin, Zhou Jianxin, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47-58.

DOI: 10.1016/j.optlaseng.2015.05.003

CrossRef Google Scholar

Fabbro R, Hirano K, Pang Shengyong. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure[J]. Journal of Laser Applications, 2016, 28(2): 022427.

DOI: 10.2351/1.4944002

CrossRef Google Scholar

Börner C, Krüssel T, Dilger K. Process characteristics of laser beam welding at reduced ambient pressure[C]//Proceeding of the SPIE Volume 8603, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications Ⅱ, San Francisco, CA, US, 2013: 86030M.

Google Scholar

Reisgen U, Olschok S, Jakobs S, et al. Welding with the laser beam in vacuum[J]. Laser Technik Journal, 2015, 12(2): 42-46.

DOI: 10.1002/latj.201500014

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Corresponding author: Zhang Weihua, whzhangswjtu@126.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Research status and development prospects of laser welding under vacuum
    • Figure  1

      The penetration depth of laser welding underlow vacuum[7].

    • Figure  2

      Vacuum equipment for high-power laser welding[9]. (a) Schematic diagram. (b) Photo image of the vacuum chamber.

    • Figure  3

      Cross-sections of laser welds in stainless steel undervacuum (0.1 kPa)[10]. (a) Defocused distance of-40 mm. (b) Defocused distance of +20 mm.

    • Figure  4

      The influences of ambient pressure on the penetrationdepth of laser welded aluminum alloys[12].

    • Figure  5

      The plasma plume area as a function of vacuum degree[13].

    • Figure  6

      Photo images of local subatmospheric equipment for laser welding[14]. (a) Overall image. (b) Structure image (1. local subatmospheric module; 2. conical orifice; 3. fixed module; 4. air knife; 5. optical lens).

    • Figure  7

      The characteristics of probe laser through the plasma plume. (a) Schematic diagram of equipment[21]. (b) Change of spotpositions and refracted angles[9].

    • Figure  8

      Flow behavior and formation of porosity defectunder atmospheric pressure [8].

    • Figure  9

      Flow behaviors of molten pool during laser welding process under vacuum[8].

    • Figure  10

      Longitudinal distribution of transient temperature during laser welding process (t=31.5 ms)[26]. (a) Under vacuum. (b) Underatmospheric pressure.

    • Figure  11

      Cross-sections of laser welds[26]. (a) Under vacuum. (b) Under atmospheric pressure.

    • Figure  12

      Laser welding equipment with vacuum chamber[29]. (a) Laser head. (b) Vacuum chamber. (c) Pumping station.

    • Figure  13

      Laser welding equipment with laser beam in vacuum manufactured by PTR GmbH[30].

    • Figure  14

      Laser welding of planet wheel carrier under vacuum[30]. (a) Schematic diagram of welding position. (b) Cross-section of weld seam.

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10
    • Figure  11
    • Figure  12
    • Figure  13
    • Figure  14