-
摘要
阐述了目前气体浓度检测的7种常用光学方法,针对每种光学方法给予了详细的原理说明,列举了各种光学方法现场应用中的优缺点,以及针对光学方法优缺点所做的改进工作,提出了方法改进中的新颖想法,讨论了各种光学方法的结合使用。这其中包括常规光学气体浓度检测方法:光干涉法、光声光谱法、相关光谱法;以及新型光学气体浓度检测方法:可调谐半导体激光吸收光谱法、倏逝场型光纤气体传感法、空芯光子带隙光纤传感法、光纤环衰荡光谱法。结论指出,小型化、智能化、便携式、低功耗、高准确度、快速响应性及分布式多组分遥测技术成为现阶段光学法检测气体浓度的发展趋势。
Abstract
Seven common optical methods for gas concentration detection are described. The basic principles, advantages and disadvantages of each method are given in detail. The improvement work and some novel ideas are presented. The applications of combined methods are discussed. These optical methods include some conventional gas concentration detection technologies, such as optical interferential method, photoacoustic detection (PAS), correlation spectroscopy, and some novel gas concentration detection technologies, such as tunable diode laser absorption spectroscopy (TDLAS), evanescent wave field sensing technology, hollow core photonic bandgap fiber (HC-PBF) sensing technology and fiber loop ring-down spectroscopy (FLRDS). The prospect of optical gas sensing is listed at the end of the paper, which mainly refers to miniaturization, intelligence, portability, low power consumption, high accuracy, fast response and distributed multi-component telemetry technology.
-
Key words:
- optical sensing /
- gas concentration /
- detection method /
- fiber optics sensing
-
Overview
With the problem of air pollution and the improvement of life quality, people are increasingly anxious about the surrounding air quality in recent years, which also promotes the development of gas concentration detection technologies. At present, these technologies have focused on electrochemical method, catalytic combustion, gas chromatography and optical methods. Among them, the optical method of gas concentration detection has its unique advantages, such as high sensitivity and high accuracy. Through the combination of optical fiber sensing technology, this method can realize the detection of gas concentration in extreme environment, with the advantages of anti-electromagnetic interference, flame retardant, intrinsically safe, and so on. In contrast, the non-optical detection methods make some bad performance, such as poor sensitivity, bad accuracy and low reproducibility, which are unable to be applied to the industrial site.
And seven common optical methods for gas concentration detection are described, which contains 3 conventional gas concentration detection technologies and 4 novel methods. The former is composed of optical interferential method, photoacoustic detection (PAS), and correlation spectroscopy. The latter consists of tunable diode laser absorption spectroscopy(TDLAS), evanescent wave field sensing technology, hollow core photonic bandgap fiber(HC-PBF) sensing technology and fiber loop ring-down spectroscopy(FLRDS). The basic principles, advantages and disadvantages of each method are given and compared in detail. The improvement work and some novel ideas are presented. The applications of combined methods are also discussed. The prospect of optical gas sensing is listed, which mainly refers to miniaturization, intelligence, portability, low power consumption, high accuracy, fast response and distributed multi-component telemetry technology.
At last, some new ideas and technologies have been pointed out for gas concentration sensing, such as seeking sensitive films that can interact with the measured gas, adopting special fibers, or using the cladding doped rare earth elements. In addition, on the basis of evanescent field sensing, researchers combine physics with optics to form surface plasmon resonance fiber gas sensing. And the use of hollow core photonic bandgap fiber for the gas chamber, sharing the way with the optical path, increases the utilization of optical power and can achieve distributed sensing, but the gas diffusion cycle time should be considered. The emergence of laser technology makes the optical detection method more excellent, and with the development of wireless communication technology and the awareness of people's health, harmful gas detection devices will be more and more popular with the family. Simultaneously, the telemetry distributed sensing technology for gas concentration will also become increasingly common in factories.
-
-
表 1 近红外常见气体的吸收波长.
Table 1. Absorption wavelength of near infrared gas.
Gas O2 NO2 H2O C2H2 NH3 CO CO2 H2S CH4 Wavelength λ/μm 0.761 0.8 1.365 1.53 1.544 1.567 1.573 1.578 1.666 表 2 各方法性能指标的比较.
Table 2. Comparison of performance indicators of different methods.
Gas Wavelength λ/nm Source Path length Detection limit/measured concentration Sensitivity /response time Technique Ref. H2S 1578 DFB 22 cm 10~50 ppm Not stated M-Z interferometer [11] HF 1300 Laser 10 cm 2~10 ppm 0.08 μL/L PAS [16] CH4 3310 Broad band 17 cm/12 cm 50 ppm 20×10-6 Correlation spectroscopy [24] CH4 1653 DFB 27 m <0.1 ppm Not stated TDLAS [28] H2S —— Tungsten halogen lamp 1 cm ZnO thin film & nanoparticles 10~100 ppm 1.49 nm/ppm Evanescentwave [38] CH4 1666 DFB 13.7 cm 158 ppm 248 s HC-PBF [47] CH4 1528~1564 DFB Fiber loopdiameter 50 cm 2.37 ppm 4.21 μs/% FLRDS [53] -
参考文献
[1] 褚衍平. 基于谐波检测原理的双光路光纤气体传感系统研究[D]. 秦皇岛: 燕山大学, 2009.
Chu Yanping. Research on two optical paths fiber gas sensor based on harmonic detection[D]. Qinhuangdao: Yanshan University, 2009.
http://cdmd.cnki.com.cn/Article/CDMD-10216-2010018304.htm [2] 侯伟. 基于谐波检测技术的气体浓度测量方法研究[D]. 沈阳: 东北大学, 2013.
Hou Wei. Research on gas concentration measuring method based on harmonic detection technology[D]. Shenyang: Northeastern University, 2013.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2994782 [3] 杨开武, 白鹏, 陈长兴.气体浓度光学分析方法研究[J].煤气与热力, 2007, 27(8): 17–21. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mqrl200708007&dbname=CJFD&dbcode=CJFQ
Yang Kaiwu, Bai Peng, Chen Changxing. Study on optical analysis method of gas concentration[J].Gas & Heat, 2007, 27(8): 17–21. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mqrl200708007&dbname=CJFD&dbcode=CJFQ
[4] 郑龙江, 李鹏, 秦瑞峰, 等.气体浓度检测光学技术的研究现状和发展趋势[J].激光与光电子学进展, 2008, 45(8): 24–32. https://www.wenkuxiazai.com/doc/c4031652647d27284a735101-4.html
Zheng Longjiang, Li Peng, Qin Ruifeng, et al. Research situation and developing tendency for optical measurement technology of gas density[J]. Laser & Optoelectronics Progress, 2008, 45(8): 24–32. https://www.wenkuxiazai.com/doc/c4031652647d27284a735101-4.html
[5] 鲜跃仲, 薛建, 张文, 等.新型二氧化硫气体电化学传感器的研究[J].高等学校化学学报, 2000, 21(9): 1375–1376. http://d.wanfangdata.com.cn/Periodical_gdxxhxxb200009029.aspx
Xian Yuezhong, Xue Jian, Zhang Wen, et al. Studies on a novel sulfur dioxide gas electrochemical sensor[J]. Chemical Journal of Chinese Universities, 2000, 21(9): 1375–1376. http://d.wanfangdata.com.cn/Periodical_gdxxhxxb200009029.aspx
[6] 宋林丽, 张志杰, 刘子健.基于催化燃烧原理的新型瓦斯检测系统研究[J].中北大学学报(自然科学版), 2015, 36(3): 372–377. http://www.cnki.com.cn/Article/CJFDTotal-HBGG201503025.htm
Song Linli, Zhang Zhijie, Liu Zijian. A novel mashgas detection system based on catalytic combustion principle[J]. Journal of North University of China (Natural Science Edition), 2015, 36(3): 372–377. http://www.cnki.com.cn/Article/CJFDTotal-HBGG201503025.htm
[7] 王秀敏.用气相色谱法测可燃气体浓度[J].中国科技纵横, 2010(9): 113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkjzh201009105
[8] 陈国华, 兰晓峰, 李发旺, 等.气相色谱法定量分析气体中二氧化硫[J].内蒙古石油化工, 2009, 35(1): 27–28. http://www.docin.com/p-1164028187.html
Chen Guohua, Lan Xiaofeng, Li Fawang, et al. The quantitative analysis way to analyze sulfur dioxide of gas by gas chromatogram[J]. Inner Mongulia Petrochemical Industry, 2009, 35(1): 27–28. http://www.docin.com/p-1164028187.html
[9] 梁波, 李文修, 崔红淼.新型光纤传感器的特点和应用[J].日用电器, 2015(11): 17–19. doi: 10.3969/j.issn.1673-6079.2015.11.007 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=djdq201511007&dbname=CJFD&dbcode=CJFQ
Liang Bo, Li Wenxiu, Cui Hongmiao. Characteristics and application of new type fiber optic sensor[J]. Electrical Appliances, 2015(11): 17–19. doi: 10.3969/j.issn.1673-6079.2015.11.007 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=djdq201511007&dbname=CJFD&dbcode=CJFQ
[10] 褚状状, 游利兵, 王庆胜, 等.有害气体检测的光纤传感技术发展[J].传感器与微系统, 2016, 35(9): 1–4, 8. http://www.cqvip.com/QK/90353A/201609/670013353.html
Chu Zhuangzhuang, You Libing, Wang Qingsheng, et al. Development of optical fiber sensing technology for harmful gases detecting[J]. Transducer and Microsystem Technologies, 2016, 35(9): 1–4, 8. http://www.cqvip.com/QK/90353A/201609/670013353.html
[11] 卜凡云. 基于M-Z干涉仪的光纤气体传感器[D]. 无锡: 江南大学, 2012.
Bu Fanyun. Fiber-optic gas sensor based on M-Z interferometer[D]. Wuxi: Jiangnan University, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10295-1012329476.htm [12] 郭长立. 一种煤矿瓦斯浓度的光学测量方法: CN102305775A[P]. 2012-01-04.
Guo Changli. Optical measurement method for gas concentration of coal mines: CN102305775A[P]. 2012-01-04.
http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=CN201110253382.5 [13] 张仙玲, 范旭东, 肖韶荣, 等. 一种气体浓度测量方法及测量装置: CN103411888A[P]. 2013-11-27.
Zhang Xianling, Fan Xudong, Xiao Shaorong, et al. Gas concentration measuring method and measuring device: CN103411888A[P]. 2013-11-27.
http://d.wanfangdata.com.cn/Patent_CN201310379392.2.aspx [14] 陈乐君, 刘玉玲, 余飞鸿.光声光谱气体探测器的新发展[J].光学仪器, 2006, 28(5): 86–91. https://www.wenkuxiazai.com/doc/7b2acd08763231126edb11e1.html
Chen Lejun, Liu Yuling, Yu Feihong. New research progress of photoacoustic spectroscopy gas detector[J]. Optical Instruments, 2006, 28(5): 86–91. https://www.wenkuxiazai.com/doc/7b2acd08763231126edb11e1.html
[15] 张望. 光声光谱微量气体检测技术及其应用研究[D]. 大连: 大连理工大学, 2010.
Zhang Wang. Research on the photoacoustic spectroscopy for trace gas detection and applications[D]. Dalian: Dalian University of Technology, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-10141-2011014123.htm [16] 吕权息, 龙梅丹, 刘龙为.基于光声光谱技术的氟化氢气体检测仪的研究[J].环境科学与技术, 2016, 39(4): 83–87. http://www.cqvip.com/QK/90776X/201604/668878630.html
Lv Quanxi, Long Meidan, Liu Longwei. Research on gas detector for hydrogen fluoride based on photoacoustic spectroscopy[J]. Environmental Science & Technology, 2016, 39(4): 83–87. http://www.cqvip.com/QK/90776X/201604/668878630.html
[17] 姜萌, 冯巧玲, 魏宇峰, 等.小型化光声光谱气体传感器研究进展[J].激光与光电子学进展, 2015, 52(2): 020006. http://www.opticsjournal.net/abstract.htm?id=OJ1501290000144A7C0F
Jiang Meng, Feng Qiaoling, Wei Yufeng, et al. Recent advance in miniaturization of photo-acoustic spectroscopy gas sensor[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020006. http://www.opticsjournal.net/abstract.htm?id=OJ1501290000144A7C0F
[18] 梁丽荣. 呼出氨气光声光谱检测及医学应用研究[D]. 大连: 大连理工大学, 2012.
Liang Lirong. Breath ammonia measurement based on photoacoustic spectroscopy for medical application[D]. Dalian: Dalian University of Technology, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10141-1012395075.htm [19] 陈伟根, 周恒逸, 黄会贤, 等.基于半导体激光器的乙炔气体光声光谱检测及其定量分析[J].仪器仪表学报, 2010, 31(3): 665–670. http://www.cqvip.com/QK/94550X/201003/33376127.html
Chen Weigen, Zhou Hengyi, Huang Huixian, et al. Diode laser based photoacoustic spectroscopy detection of acetylene gas and its quantitative analysis[J]. Chinese Journal of Scientific Instrument, 2010, 31(3): 665–670. http://www.cqvip.com/QK/94550X/201003/33376127.html
[20] 杨晓龙. 光声光谱技术中的多气体成份分析方法研究[D]. 大连: 大连理工大学, 2003.
http://cdmd.cnki.com.cn/Article/CDMD-10141-2003061464.htm [21] 付松年, 苏立国, 吴重庆, 等.相关光谱法在光纤气体传感中的应用[J].光谱学与光谱分析, 2002, 22(6): 912–915. http://www.cqvip.com/QK/90993X/200206/7254920.html
Fu Songnian, Su Liguo, Wu Chongqing, et al. Application of correlation spectroscopy method to fiber gas sensor[J]. Spectroscopy and Spectral Analysis, 2002, 22(6): 912–915. http://www.cqvip.com/QK/90993X/200206/7254920.html
[22] 董小鹏.采用Tm光纤光源的甲烷气体相关光谱检测[J].中国激光, 1994, 21(10):789–794. doi: 10.3321/j.issn:0258-7025.1994.10.005 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz410.004&dbname=CJFD&dbcode=CJFQ
Dong Xiaopeng. Detection of methane gas with fibre correlation spectroscopy, using semiconductor laser diode pumped Tin-doped fibre source[J].Chinese Journal of Lasers, 1994, 21(10): 789–794. doi: 10.3321/j.issn:0258-7025.1994.10.005 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz410.004&dbname=CJFD&dbcode=CJFQ
[23] Dakin J P, Edwards H O, Weigl B H. Progress with optical gas sensors using correlation spectroscopy[J]. Sensors and Actuators B: Chemical, 1995, 29(1–3): 87–93. doi: 10.1016/0925-4005(95)01667-8 http://cn.bing.com/academic/profile?id=856beba3b23e21416ee1de7953621d34&encoded=0&v=paper_preview&mkt=zh-cn
[24] 乔记平, 秦建敏, 闫晓燕, 等.基于宽带光源与相关光谱技术的CH4传感器研究[J].光电子·激光, 2014, 25(2): 217–221. http://www.opticsjournal.net/abstract.htm?id=OJ1211010001228D0GcJ
Qiao Jiping, Qin Jianmin, Yan Xiaoyan, et al. Study of CH4 sensor based on a broadband light source and correlation spectroscopy[J]. Journal of Optoelectronics·Laser, 2014, 25(2): 217–221. http://www.opticsjournal.net/abstract.htm?id=OJ1211010001228D0GcJ
[25] 张亚男, 赵勇, 王琦, 等.基于相关光谱和差分检测的气体传感系统[J].东北大学学报(自然科学版), 2015, 36(4): 461–464. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dbdxxb201504002
Zhang Ya'nan, Zhao Yong, Wang Qi, et al. Gas sensing system based on correlation spectroscopy and differential technology[J]. Journal of Northeastern University (Natural Science Edition), 2015, 36(4): 461–464. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dbdxxb201504002
[26] 潘卫东. 基于TDLAS的痕量乙烯气体检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Pan Weidong. Research on tunable diode laser absorption spectroscopy for gas analysis of trace ethylene[D]. Harbin: Harbin Institute of Technology, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-10213-1014080649.htm [27] 姚华. 采用可调谐激光吸收光谱技术遥测甲烷气体浓度的研究[D]. 杭州: 浙江大学, 2011.
Yao Hua. Research on remote sensing of methane based on tunable diode laser absorption spectroscopy technique[D]. Hangzhou: Zhejiang University, 2011.
http://cdmd.cnki.com.cn/article/cdmd-10335-1011052287.htm [28] 阚瑞峰, 刘文清, 张玉钧, 等.基于可调谐激光吸收光谱的大气甲烷监测仪[J].光学学报, 2006, 26(1): 67–70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200601013
Kan Ruifeng, Liu Wenqing, Zhang Yujun, et al. Infrared absorption spectrometer of monitoring ambient methane[J]. Acta Optica Sinica, 2006, 26(1): 67–70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200601013
[29] 许振宇, 刘文清, 阚瑞峰, 等.可调谐半导体激光吸收光谱中的吸光度反演算法研究[J].光谱学与光谱分析, 2010, 30(8): 2201–2204. http://www.cqvip.com/qk/90993X/201008/34730620.html
Xu Zhenyu, Liu Wenqing, Kan Ruifeng, et al. Study on the arithmetic of absorbance inversion based on tunable diode-laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2201–2204. http://www.cqvip.com/qk/90993X/201008/34730620.html
[30] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4–50. doi: 10.1016/j.jqsrt.2013.07.002 https://www.sciencedirect.com/science/article/pii/S0022407313002859
[31] Zhang Shuai, Liu Wenqing, Zhang Yujun, et al. Gas leakage monitoring with scanned-wavelength direct absorption spectroscopy[J]. Chinese Optics Letters, 2010, 8(5): 443–446. doi: 10.3788/COL http://cn.bing.com/academic/profile?id=8d0964399363293c65ad8fb7edfef6d3&encoded=0&v=paper_preview&mkt=zh-cn
[32] 徐振峰, 张悦, 李晓, 等.基于波长调制技术的甲烷气体浓度检测的研究[J].仪表技术与传感器, 2007(4): 61–63. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ybjs200704023&dbname=CJFD&dbcode=CJFQ
Xu Zhenfeng, Zhang Yue, Li Xiao, et al. Research on methane gas measurement based on wavelength modulation technology[J]. Instrument Technique and Sensor, 2007(4): 61–63. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ybjs200704023&dbname=CJFD&dbcode=CJFQ
[33] 伍昂, 吴尚谦, 蔡彦, 等.剩余振幅调制对波长调制光谱信号线型的影响[J].激光技术, 2012, 36(3): 357–360, 378. http://www.cqvip.com/QK/92283X/201203/41872631.html
Wu Ang, Wu Shangqian, Cai Yan, et al. Effect of RAM on WMS signal line shape[J]. Laser Technology, 2012, 36(3): 357–360, 378. http://www.cqvip.com/QK/92283X/201203/41872631.html
[34] Huang Jianqiang, Zheng Chuantao, Gao Zongli, et al. Near-infrared methane detection device using wavelength-modulated distributed feedback diode laser around 1.654 µm[J]. Spectroscopy Letters, 2014, 47(3): 197–205. doi: 10.1080/00387010.2013.790062 http://cn.bing.com/academic/profile?id=839ea93d99809320e816908fd0ee1904&encoded=0&v=paper_preview&mkt=zh-cn
[35] Li Bin, Zheng Chuantao, Liu Huifang, et al. Development and measurement of a near-infrared CH4 detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe[J]. Sensors and Actuators B: Chemical, 2016, 225: 188–198. doi: 10.1016/j.snb.2015.11.037 https://www.sciencedirect.com/science/article/pii/S0925400515306195
[36] 王聪. 光学式污染气体检测技术的研究[D]. 秦皇岛: 燕山大学, 2006.
Wang Cong. Research on optical pollution gas detection technology[D]. Qinhuangdao: Yanshan University, 2006.
http://cdmd.cnki.com.cn/Article/CDMD-10216-2007091006.htm [37] 邓燕.浅谈倏逝波[J].科技资讯, 2010(13): 100, 103. doi: 10.3969/j.issn.1672-3791.2010.13.086 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxlj201013087&dbname=CJFD&dbcode=CJFQ
[38] Usha S P, Mishra S K, Gupta B D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: a comparison of surface plasmon resonance and lossy mode resonance[J]. Sensors and Actuators B: Chemical, 2015, 218: 196–204. doi: 10.1016/j.snb.2015.04.108 https://www.deepdyve.com/lp/elsevier/fiber-optic-hydrogen-sulfide-gas-sensors-utilizing-zno-thin-film-zno-FGY0Bqs0CE
[39] Renganathan B, Sastikumar D, Gobi G, et al. Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides[J]. Sensors and Actuators B: Chemical, 2011, 156(1): 263–270. doi: 10.1016/j.snb.2011.04.031 http://cn.bing.com/academic/profile?id=15eb8c8b6538acf9019bb62aee4cf8f2&encoded=0&v=paper_preview&mkt=zh-cn
[40] Shemshad J, Aminossadati S M, Kizil M S. A review of developments in near infrared methane detection based on tunable diode laser[J]. Sensors and Actuators B:Chemical, 2012, 171–172: 77–92. https://www.sciencedirect.com/science/article/pii/S092540051200593X
[41] Devendiran S, Sastikumar D. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber[J]. Optics & Laser Technology, 2017, 89: 186–191. https://www.sciencedirect.com/science/article/pii/S0030399216307307
[42] Wang Wei, Hou Lantian. Present situation and future development in photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2008, 45(2): 43–58.
[43] 景磊. 新型光子晶体光纤气体传感器研究[D]. 天津: 天津大学, 2012.
Jing Lei. Research on novel gas sensors with photonic crystal fibers[D]. Tianjin: Tianjin University, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10056-1013004886.htm [44] 韦民红, 童敏明, 童夏敏.基于光子晶体光纤传感器的瓦斯监测系统[J].传感器与微系统, 2012, 31(10): 97–99. doi: 10.3969/j.issn.1000-9787.2012.10.029 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cgqj201210030&dbname=CJFD&dbcode=CJFQ
Wei Minhong, Tong Minming, Tong Xiamin. Gas monitoring system based on photonic crystal fiber sensor[J]. Transducer and Microsystem Technologies, 2012, 31(10): 97–99. doi: 10.3969/j.issn.1000-9787.2012.10.029 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cgqj201210030&dbname=CJFD&dbcode=CJFQ
[45] 戴婳. 空芯光子晶体光纤传感器在瓦斯检测系统中的应用[D]. 淮南: 安徽理工大学, 2014.
Dai Hua. Application of application in gas detection system in gas detection system[D]. Huainan: Anhui University of Science and Technology, 2014.
http://cdmd.cnki.com.cn/article/cdmd-10361-1014384717.htm [46] 黄小亮. 基于光子晶体光纤和红外吸收光谱的气体传感系统的研究[D]. 长春: 吉林大学, 2016.
Huang Xiaoliang. Research of gas sensor system based on photonic crystal fiber and infrared absorption spectroscopy[D]. Changchun: Jilin University, 2016.
http://cdmd.cnki.com.cn/Article/CDMD-10183-1016083947.htm [47] Carvalho J P, Lehmann H, Bartelt H, et al. Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy[J]. Journal of Sensors, 2009, 2009(2):10. http://cn.bing.com/academic/profile?id=37fd00a974e450a5f14b218417e28f4f&encoded=0&v=paper_preview&mkt=zh-cn
[48] 阴亚芳, 周圆, 杨祎, 等.基于光子晶体光纤的气体传感系统设计与实现[J].半导体光电, 2015, 36(5): 811–814. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201505032
Yin Yafang, Zhou Yuan, Yang Yi, et al. Design and implementation of gas sensing system based on photonic crystal fiber[J]. Semiconductor Optoelectronics, 2015, 36(5): 811–814. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201505032
[49] 孙顺根. 基于光纤衰荡腔的甲烷气体传感系统研究[D]. 武汉: 华中科技大学, 2011.
Sun Shungen. Study of methane gas detection system based on optical fiber cavity ring-down[D]. Wuhan: Huazhong University of Science & Technology, 2011.
http://cdmd.cnki.com.cn/article/cdmd-10487-1012013266.htm [50] 白璐. 基于光纤环形腔衰荡光谱技术的气体浓度测量方法与实验研究[D]. 沈阳: 东北大学, 2013.
Bai Lu. Research on optical fiber loop cavity ring-down spectroscopy gas concentration measuring method and experiment[D]. Shenyang: Northeastern University, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-10145-1015702458.htm [51] 郭继坤, 赵肖东, 马鹏飞.基于光纤环衰荡腔的甲烷传感系统[J].黑龙江科技大学学报, 2014, 24(4): 405–409. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hljkyxyxb201404015
Guo Jikun, Zhao Xiaodong, Ma Pengfei. Study on methane sensing system based on fiber ring cavity ring-down[J]. Journal of Heilongjiang University of Science and Technology, 2014, 24(4): 405–409. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hljkyxyxb201404015
[52] 崔光磊.基于光纤环衰荡技术的多参量在线监测系统研究[J].武汉理工大学学报, 2011, 33(6): 144–147. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201106034.htm
Cui Guanglei. Study of multi-parameter online monitoring system based on fiber-loop ring-down technology[J]. Journal of Wuhan University of Technology, 2011, 33(6): 144–147. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201106034.htm
[53] Qian Xiaolong, Zhao Yong, Zhang Ya'nan, et al. Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique[J].Sensors and Actuators B: Chemical, 2016, 228: 665–672. doi: 10.1016/j.snb.2016.01.087 https://www.sciencedirect.com/science/article/pii/S0925400516300879
[54] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Measurement Science & Technology, 2012, 24(1): 012004. http://cn.bing.com/academic/profile?id=6b56ad223948203bb657625f1d2f2dd1&encoded=0&v=paper_preview&mkt=zh-cn
[55] Mishra S K, Bhardwaj S, Gupta B D. Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas[J]. IEEE Sensors Journal, 2015, 15(2): 1235–1239. doi: 10.1109/JSEN.2014.2356251 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6894592
[56] Tabassum R, Mishra S K, Gupta B D. Fiber optic hydrogen sulfide gas sensor utilizing surface plasmon resonance of Cu/ZnO thin films [J]. Proceedings of SPIE, 2013, 8794: 87941E. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8794/1/Fiber-optic-hydrogen-sulfide-gas-sensor-utilizing-surface-plasmon-resonance/10.1117/12.2026060.full
-
访问统计