New website getting online, testing
改进的多光谱聚合通道行人检测
  • 摘要

    针对外部环境的多变性和复杂性导致的单一波段下行人检测准确率较低的问题,提出了一种改进的基于可见和红外双波段聚合通道特征的行人检测算法。分别提取可见图像与红外图像的聚合通道特征;通过改变像素对比规则,采用自适应的阈值进行比较,将得到的改进的中心对称的局部二值模式特征添加到特征通道中;针对多光谱聚合通道特征设计了不同滤波器组进行滤波;训练分类器,实现多光谱下行人检测。实验表明,改进的局部二值模式特征能更好地描述红外图像中行人的对称性,中间滤波层丰富了候选特征池,算法在多种场景均能有效检测出行人,提高了行人检测精度,与利用多光谱聚合积分通道的检测工作相比,平均漏检率有所降低。

    关键词

    Abstract

    To solve the problem of low pedestrian detection accuracy in a single band due to variability and complexity of external environment, an improved pedestrian detection algorithm based on multispectral aggregate channel feature is proposed. The aggregate channel features of visible images and infrared images are extracted, respectively. The pixel contrast rule is changed and the results are compared with the adaptive threshold. The improved central symmetric local binary pattern feature is added to the feature channels. Different filter banks are designed to filter the multispectral aggregate channel features. The classifier is trained to realize the multispectral pedestrian detection. Experiments show that the improved local binary pattern feature can describe the symmetry of pedestrians of infrared images better and the intermediate filter layer enriches the candidate feature pool. The algorithm can effectively detect pedestrians in various scenes and improve the pedestrian detection accuracy. Compared with the previous multispectral aggregate channel detection work, the algorithm reduces the log-average miss rate.

    Keywords

  • 基金

    基金项目: 

    国家自然科学基金资助项目 60874106

  • 参考文献

    Zhang S S, Benenson R, Omran M, et al. How far are we from solving pedestrian detection?[C]// Proceedings of IEEEConference on Computer Vision and Pattern Recognition, 2016: 1259–1267.

    https://www.researchgate.net/publication/301854437_How_Far_are_We_from_Solving_Pedestrian_Detection

    黄富瑜, 沈学举, 刘旭敏, 等.基于空时域融合处理检测超大视场红外目标[J].光学精密工程, 2015, 23(8): 2328–2338.

    http://www.cnki.com.cn/Article/CJFDTotal-GXJM201508027.htm

    Huang Fuyu, Shen Xueju, Liu Xumin, et al. Detection of super wide-field infrared target based on spatial-temporal fusion processing[J]. Optics and Precision Engineering, 2015, 23(8): 2328–2338.

    http://www.cnki.com.cn/Article/CJFDTotal-GXJM201508027.htm

    Davis J, Sharma V. Background-subtraction using contour-based fusion of thermal and visible imagery[J]. Computer Vision and Image Understanding, 2007, 106(2): 162–182.

    https://web.cse.ohio-state.edu/~davis.1719/Publications/cviu07.pdf

    Castillo J C, Serrano-Cuerda J, Femández-Caballero A, et al. Hierarchical Architecture for Robust People Detection by Fusion of Infrared and Visible Video[M]// Novais P, Camacho D, Analide C, et al. Intelligent Distributed Computing IX. Studies in Computational Intelligence. Cham: Springer, 2016: 343–351.

    展开
  • 版权信息

    版权属于中国科学院光电技术研究所,但文章内容可以在本网站免费下载,以及免费用于学习和科研工作
  • 关于本文

    DOI: 10.3969/j.issn.1003-501X.2017.09.004
    引用本文
    Citation:
    彭志蓉, 赵美蓉, 杨伟明, 郑叶龙. 改进的多光谱聚合通道行人检测[J]. 光电工程, 2017, 44(9): 882-887. DOI: 10.3969/j.issn.1003-501X.2017.09.004
    Citation:
    Peng Zhirong, Zhao Meirong, Yang Weiming, Zheng Yelong. Improved multispectral aggregate channel for pedestrian detection. Opto-Electronic Engineering 44, 882-887 (2017). DOI: 10.3969/j.issn.1003-501X.2017.09.004
    导出引用
    出版历程
    • 收稿日期 2017-05-21
    • 修回日期 2017-07-01
    • 刊出日期 2017-09-14
    文章计量
    分享:

Zhang S S, Benenson R, Omran M, et al. How far are we from solving pedestrian detection?[C]// Proceedings of IEEEConference on Computer Vision and Pattern Recognition, 2016: 1259–1267.

https://www.researchgate.net/publication/301854437_How_Far_are_We_from_Solving_Pedestrian_Detection

黄富瑜, 沈学举, 刘旭敏, 等.基于空时域融合处理检测超大视场红外目标[J].光学精密工程, 2015, 23(8): 2328–2338.

http://www.cnki.com.cn/Article/CJFDTotal-GXJM201508027.htm

Huang Fuyu, Shen Xueju, Liu Xumin, et al. Detection of super wide-field infrared target based on spatial-temporal fusion processing[J]. Optics and Precision Engineering, 2015, 23(8): 2328–2338.

http://www.cnki.com.cn/Article/CJFDTotal-GXJM201508027.htm

Davis J, Sharma V. Background-subtraction using contour-based fusion of thermal and visible imagery[J]. Computer Vision and Image Understanding, 2007, 106(2): 162–182.

https://web.cse.ohio-state.edu/~davis.1719/Publications/cviu07.pdf

Castillo J C, Serrano-Cuerda J, Femández-Caballero A, et al. Hierarchical Architecture for Robust People Detection by Fusion of Infrared and Visible Video[M]// Novais P, Camacho D, Analide C, et al. Intelligent Distributed Computing IX. Studies in Computational Intelligence. Cham: Springer, 2016: 343–351.

Yuan Y, Lu X Q, Chen X. Multi-spectral pedestrian detection[J]. Signal Processing, 2015, 110(5): 94–100.

http://cn.bing.com/academic/profile?id=332ffaca2c325a71e713ad87dba34ab8&encoded=0&v=paper_preview&mkt=zh-cn

Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037–1045.

Dollar P, Appel R, Belongie S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532–1545.

DOI: 10.1109/TPAMI.2014.2300479

Heikkila M, Pietikainen M, Schmid C. Description of interest regions with center-symmetric local binary patterns[C]// Kalra P K, Peleg S. Computer Vision. Graphics and Image Processing. Berlin, Heidelberg: Springer 2006: 58–69.

刘琳, 耿俊梅, 顾国华, 等.轮廓特征与神经网络相结合的行人检测[J].光电工程, 2014, 41(7): 50–56.

http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdgc201407010&dbname=CJFD&dbcode=CJFQ

Liu Lin, Geng Junmei, Gu Guohua, et al. Human detection based on contour features and neural networks[J]. Opto-Electronic Engineering, 2014, 41(7): 50–56.

http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdgc201407010&dbname=CJFD&dbcode=CJFQ

谷灵康, 周鸣争.多特征融合下的快速行人检测[J].光电工程, 2015, 42(9): 14–20.

http://www.cnki.com.cn/Article/CJFDTotal-GDGC201509004.htm

Gu Lingkang, Zhou Mingzheng. Fast pedestrian detection based on multi-feature fusion[J]. Opto-Electronic Engineering, 2015, 42(9): 14–20.

http://www.cnki.com.cn/Article/CJFDTotal-GDGC201509004.htm

Nam W, Dollar P, Han J. Local decorrelation for improved pedestrian detection[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 424–432.

Zhang S S, Benenson R, Schiele B. Filtered channel features for pedestrian detection[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1751–1760.

金志刚, 赵明昕, 张瑞, 等.基于双目视觉的聚合积分通道行人检测优化算法[J].天津大学学报:自然科学与工程技术版, 2016, 49(12): 1225–1230.

http://www.cnki.com.cn/Article/CJFDTotal-TJDX201612001.htm

Jin Zhigang, Zhao Mingxin, Zhang Rui, et al. Optimized aggregated channel features pedestrian detection algorithm based on binocular vision[J]. Journal of Tianjin University: Science and Technology, 2016, 49(12): 1225–1230.

http://www.cnki.com.cn/Article/CJFDTotal-TJDX201612001.htm

Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761.

DOI: 10.1109/TPAMI.2011.155

改进的多光谱聚合通道行人检测
  • 图  1
  • 图  2
  • 图  3
  • 图  4
  • 图  5