-
摘要
超构材料通常由亚波长的周期性谐振单元组成,具有自然材料所不具备的超常电磁特性,为操控电磁波提供了全新的技术途径。色散是材料的固有属性,调节亚波长结构的电磁共振可以实现奇异的色散特性,从而突破传统定律限制,实现对电磁波的任意操控,由此产生了一系列全新的应用,如超分辨成像/光刻、高效电磁吸收/辐射、平面光子器件等。本文总结了超构材料中色散调控的基本理论和几种典型方法,介绍了其在相关领域的应用,并对超构材料的发展前景作出展望。
Abstract
Metamaterials (MMs) composed of periodic resonant subwavelength structures exhibit exotic electromagnetic properties that do not exist in nature, and open an avenue for electromagnetic waves (EMWs) manipulation. Dispersion is an inherent property of MMs. By engineering the electromagnetic resonances of MMs, extraordinary dispersion can be achieved thereby one can break the traditional physical laws and manipulate the EWMs at will. Subsequently, a serial of applications emerge including super-resolution imaging/lithography, electromagnetic absorber/radiator and planar optical devices. In this review, we summarize several typical approaches, theories and relevant applications of dispersion engineering of MMs.
-
Key words:
- metamaterials /
- dispersion engineering /
- local phase modulation /
- planar optical devices
-
Overview
Abstract:Since it was firstly illustrated by the pronounced prism experiment of Isaac Newton, the chromatic dispersions in light matter interaction have been extensively explored. It is generally thought that the dispersion of materials introduces a significant wavelength dependence of the group velocity, leading to undesired signal distortion in communications system, chromatic aberration in imaging system and limited bandwidth of optical devices. However, if dispersions can be properly controlled, they will play a significant role in many applications. For example, dispersion management will suppress the nonlinearities of fiber dense wavelength division multiplexing (DWDM) system and the soliton propagation. Chromatic aberration can be corrected approximately by using materials that exhibit complementary dispersion. Nevertheless, because the dispersion of natural materials is determined by the electronic and molecular energy levels, traditional dispersion management technologies are cumbersome and cannot be required in integrated optics.
With the development of advanced fabrication technology and material science in recent years, the interactions between electromagnetic waves and the matter in subwavelength scale have attracted tremendous interests. In this scale, the metamaterials composed of subwavelength resonant structures exhibit extraordinary dispersion properties. The macroscopic electromagnetic properties of MMs are decided by the specific geometry and arrangement of artificial molecules and thus offering unprecedented flexibility and superiority for dispersion engineering. Consequently, the associated permittivity and permeability can be tuned from positive to zero and negative over the entire electromagnetic range, which is concerned with a surprisingly rich set of exotic optical phenomena.
Meanwhile, the excitations of SPP in metallic structures open an avenue to manipulation electromagnetic wave in nano-scale. The unique dispersion properties of SPP make it with a shrinking wavelength and the ability of local phase modulation. On one hand, the shrinking wavelength property can be utilized to achieve sub-diffraction imaging and super-resolution lithography. On the other hand, inspired by the local phase modulation ability of SPP, we can break the traditional refraction and reflection laws and manipulate electromagnetic wave in a prescribed and highly integrated manner. By introducing subwavelength apertures or antennas along the metal surface, one can harness the propagation and resonance of the SPP with specific frequency. Furthermore, the hybrid and coupling effect among pattern metallic films also increase the tenability of dispersion.
In summary, the interaction between electromagnetic wave and the matter become more diverse and complex in subwavelength scale. Understanding the principle and approaches of dispersion engineering in metamaterials is helpful to design more satisfying optical devices and enhance the electromagnetic manipulation abilities. From this viewpoint, this review manuscript will summarize the recent advances in the theories, approaches and typical applications of dispersion engineering of metamaterials. An outlook of the challenges and future directions in this fascinating area of nanophotonics is also presented at the end of the manuscript.
-
-
图 2 (a) 不同厚度金属的SPP色散及(b)对应的分辨率[16].
图 3 (a) 金属—介质多层膜中的模式耦合与(b)MIM结构中的色散关系[29].
图 13 超构材料降低宽频带低副瓣天线[81]. (a)~(c)角锥喇叭天线中的超构材料单元结构、色散曲线及远场辐射图;(d)~(e)矩形喇叭天线中的超构材料单元结构、色散曲线及远场辐射图
图 17 悬链线光学器件[79]. (a), (b)涡旋光束产生. (c), (d)贝塞尔光束产生. (e), (f)聚焦涡旋光束产生.
图 18 基于单个悬链线结构的异常偏折及自旋霍尔效应. (a)结构示意图. (b)样品电镜图. (c)实验测得的自旋霍尔效应. (d)近场(左图)与远场(右图)的异常偏折结果[125].
图 25 基于动态色散调控的任意偏振产生[165]. (a)单元结构示意图. (b)实验结果.
-
参考文献
[1] Saleh B E A, Teich M C. Fundamentals of Photonics[M]. 2nd ed. New Jersey: Wiley & Sons, 2007.
[2] Jackson J D. Classical Electrodynamics[M]. 3rd ed. Hoboken: Wiley, 1999.
[3] Kurtzke C. Suppression of fiber nonlinearities by appropriate dispersion management[J]. IEEE Photonics Technology Letters, 1993, 5(10): 1250-1253. doi: 10.1109/68.248444 http://cn.bing.com/academic/profile?id=55de32eb8ff90069fe15afedd889e609&encoded=0&v=paper_preview&mkt=zh-cn
[4] Ganapathy R. Soliton dispersion management in nonlinear optical fibers[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 4544-4550. doi: 10.1016/j.cnsns.2012.03.039 https://www.researchgate.net/publication/257448498_Soliton_dispersion_management_in_nonlinear_optical_fibers
[5] Wang Peng, Mohammad N, Menon R. Chromatic-aberration- corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545. doi: 10.1038/srep21545 http://cn.bing.com/academic/profile?id=da00a969c98729115c67cf899232780d&encoded=0&v=paper_preview&mkt=zh-cn
[6] Kosaka H, Kawashima T, Tomita A, et al. Superprism phenomena in photonic crystals[J]. Physical Review B, 1998, 58(16): R10096-R10099. doi: 10.1103/PhysRevB.58.R10096 http://cn.bing.com/academic/profile?id=7438760ba442a63a560a0cc459bb5ea4&encoded=0&v=paper_preview&mkt=zh-cn
[7] Belshaw N S, Freedman P A, O'Nions R K, et al. A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes[J]. International Journal of Mass Spectrometry, 1998, 181(1-3): 51-58. doi: 10.1016/S1387-3806(98)14150-7 http://cn.bing.com/academic/profile?id=042edb424540a83fb576d79ec7283f60&encoded=0&v=paper_preview&mkt=zh-cn
[8] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi: 10.1038/35570 http://cn.bing.com/academic/profile?id=f313e22fa572ab02934d0e85da28b1b9&encoded=0&v=paper_preview&mkt=zh-cn
[9] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. https://www.researchgate.net/publication/232778647_Surface_Plasmon_Subwavelength_Optics
[10] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Proceedings of the Physical Society of London, 1902, 18: 269. doi: 10.1088/1478-7814/18/1/325 http://cn.bing.com/academic/profile?id=34068fe4551db261962daec78ce27275&encoded=0&v=paper_preview&mkt=zh-cn
[11] Zia R, Schuller J A, Chandran A, et al. Plasmonics: the next chip-scale technology[J]. Materialstoday, 2006, 9(7-8): 20-27. http://cn.bing.com/academic/profile?id=2b72fbb54efb2858f6e4f661441676f8&encoded=0&v=paper_preview&mkt=zh-cn
[12] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849 http://cn.bing.com/academic/profile?id=3c61fe9ccbb1d9fb1e4c9244fe01914d&encoded=0&v=paper_preview&mkt=zh-cn
[13] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590-595. doi: 10.1109/JPHOT.2012.2189436 http://cn.bing.com/academic/profile?id=6ae415c5db5a102490e5b66cbec048ea&encoded=0&v=paper_preview&mkt=zh-cn
[14] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201. https://link.springer.com/article/10.1007/s11433-015-5688-1
[15] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221 http://cn.bing.com/academic/profile?id=3127fb8bd60d8073848023fecf5f8143&encoded=0&v=paper_preview&mkt=zh-cn
[16] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055-3065. doi: 10.1364/OPEX.12.003055 http://cn.bing.com/academic/profile?id=706b9d03f3929f7dd6602fe777205df9&encoded=0&v=paper_preview&mkt=zh-cn
[17] Fang N, Lee H, Sun Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759 http://cn.bing.com/academic/profile?id=64f3b5d3092e1699a8b29cf49bb74da3&encoded=0&v=paper_preview&mkt=zh-cn
[18] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface Plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957-961. doi: 10.1021/nl0506094 http://cn.bing.com/academic/profile?id=7779b98995ac0d786bdcc63c83d2cf7c&encoded=0&v=paper_preview&mkt=zh-cn
[19] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32nm and 22nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000
[20] 王长涛, 赵泽宇, 高平, 等.表面等离子体超衍射光学光刻[J].科学通报, 2016, 61(6): 585-599. http://mall.cnki.net/magazine/Article/HWAI200909019.htm
Wang Changtao, Zhao Zeyu, Gao Ping, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 2016, 61(6): 585-599. http://mall.cnki.net/magazine/Article/HWAI200909019.htm
[21] Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007.
[22] Atwater H A. The promise of plasmonics[J]. Scientific American, 2007, 296: 56-62. doi: 10.1038/scientificamerican0407-56 https://www.scientificamerican.com/article/the-promise-of-plasmonics/
[23] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas & Propagation, 2015, 2015: 204127. http://cn.bing.com/academic/profile?id=6b5a1d46aa30085fe3b349962771be20&encoded=0&v=paper_preview&mkt=zh-cn
[24] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin: Springer-Verlag, 1988.
[25] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966 http://cn.bing.com/academic/profile?id=282e5dd1e888ff0e210547802fcd8b9b&encoded=0&v=paper_preview&mkt=zh-cn
[26] Melville D O S, Blaikie R J. Super-resolution imaging through a planar silver layer[J]. Optics Express, 2005, 13(6): 2127-2134. doi: 10.1364/OPEX.13.002127 http://cn.bing.com/academic/profile?id=86ff17e834d724d8635e33d061066bea&encoded=0&v=paper_preview&mkt=zh-cn
[27] Ramakrishna S A, Pendry J B, Wiltshire M C K, et al. Imaging the near field[J]. Journal of Modern Optics, 2003, 50(9): 1419-1430. doi: 10.1080/09500340308235215 http://cn.bing.com/academic/profile?id=cc0fac10761bcc7e6e46d2e963c60026&encoded=0&v=paper_preview&mkt=zh-cn
[28] Xiong Yi, Liu Zhaowei, Sun Cheng, et al. Two-dimensional Imaging by far-field superlens at visible wavelengths[J]. Nano Letters, 2007, 7(11): 3360-3365. doi: 10.1021/nl0716449 http://cn.bing.com/academic/profile?id=a94f7e231e69d128ccb936c256ae6dfa&encoded=0&v=paper_preview&mkt=zh-cn
[29] Xu T, Fang L, Ma J, et al. Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns[J]. Applied Physics B, 2009, 97(1): 175-179. doi: 10.1007/s00340-009-3615-8 https://link.springer.com/content/pdf/10.1007%2Fs00340-009-3615-8.pdf
[30] Wang Changtao, Gao Ping, Tao Xing, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films[J]. Applied Physics Letters, 2013, 103(3): 031911. doi: 10.1063/1.4815924 http://cn.bing.com/academic/profile?id=a094c3936d069b511d9f4662333fdbf3&encoded=0&v=paper_preview&mkt=zh-cn
[31] High A A, Devlin R C, Dibos A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192-196. doi: 10.1038/nature14477 https://www.researchgate.net/publication/278043090_Visible-frequency_hyperbolic_metasurface
[32] Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations[J]. Physical Review B, 2006, 74(7): 075103. doi: 10.1103/PhysRevB.74.075103 http://cn.bing.com/academic/profile?id=151ce96d58998b2f25a97ff0e3b4519c&encoded=0&v=paper_preview&mkt=zh-cn
[33] Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range[J]. Science, 2007, 315(5819): 1699-1701. doi: 10.1126/science.1138746 http://cn.bing.com/academic/profile?id=26caa603063429218781bf3f209121e6&encoded=0&v=paper_preview&mkt=zh-cn
[34] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247-8256. doi: 10.1364/OE.14.008247 http://cn.bing.com/academic/profile?id=597dff50eb3fa05efc81378aea5497b2&encoded=0&v=paper_preview&mkt=zh-cn
[35] Guo Z, Zhao Z Y, Yan L S, et al. Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films[J]. Applied Physics Letters, 2014, 105(14): 141107. doi: 10.1063/1.4896022 https://aip.scitation.org/doi/abs/10.1063/1.4896022?journalCode=apl
[36] Xu Ting, Lezec H J. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial[J]. Nature Communications, 2014, 5: 4141. doi: 10.1038/ncomms5141 http://cn.bing.com/academic/profile?id=5c474f9b74c2f2a53f47a5d4946e358d&encoded=0&v=paper_preview&mkt=zh-cn
[37] Xu Ting, Zhao Yanhui, Ma Junxian, et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 2008, 16(18): 13579-13584. doi: 10.1364/OE.16.013579 http://cn.bing.com/academic/profile?id=65054f1a3ab6e40c7ec743f595383e28&encoded=0&v=paper_preview&mkt=zh-cn
[38] Xiong Yi, Liu Zhaowei, Zhang Xiang. Projecting deep- subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers[J]. Applied Physics Letters, 2008, 93(11): 111116. doi: 10.1063/1.2985898 http://cn.bing.com/academic/profile?id=77d58b9e3d1dd276e6b6c274d21b2451&encoded=0&v=paper_preview&mkt=zh-cn
[39] Liang Gaofeng, Wang Changtao, Zhao Zeyu, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography[J]. Advanced Optical Materials, 2015, 3(9): 1248-1256. doi: 10.1002/adom.v3.9 http://cn.bing.com/academic/profile?id=2844f3437c4e88aff844d0d0957f9fee&encoded=0&v=paper_preview&mkt=zh-cn
[40] Guo Yinghui, Yan Lianshan, Pan Wei, et al. A plasmonic splitter based on slot cavity[J]. Optics Express, 2011, 19(15): 13831- 13838. doi: 10.1364/OE.19.013831 http://cn.bing.com/academic/profile?id=78716f3af268fc28d4bbed9762fe57c3&encoded=0&v=paper_preview&mkt=zh-cn
[41] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564 http://cn.bing.com/academic/profile?id=6c6c788515bb29f606d080ded6a4dfbd&encoded=0&v=paper_preview&mkt=zh-cn
[42] Shi Haofei, Wang Changtao, Du Chunlei, et al. Beam manipulating by metallic nano-slits with variant widths[J]. Optics Express, 2005, 13(18): 6815-6820. doi: 10.1364/OPEX.13.006815 http://cn.bing.com/academic/profile?id=1e272e8d304c5428bf19438cc0086f3a&encoded=0&v=paper_preview&mkt=zh-cn
[43] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713 http://cn.bing.com/academic/profile?id=90c105388d23754f318a91bc545c32ba&encoded=0&v=paper_preview&mkt=zh-cn
[44] Xu Yadong, Fu Yangyang, Chen Huanyang. Planar gradient metamaterials. Nature Reviews Materials, 2016, 1: 16067. doi: 10.1038/natrevmats.2016.67 https://www.researchgate.net/publication/311505302_Planar_gradient_metamaterials
[45] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. doi: 10.1364/OE.19.017413 http://cn.bing.com/academic/profile?id=3503d8623327bc5ba5f84f6ea8316e94&encoded=0&v=paper_preview&mkt=zh-cn
[46] Pu Mingbo, Chen Po, Wang Yanqi, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. http://cn.bing.com/academic/profile?id=97f9789ec63bd71559d6dadb1384dd02&encoded=0&v=paper_preview&mkt=zh-cn
[47] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434 http://cn.bing.com/academic/profile?id=b5f81d7e3f183cbbb8cccb3d01647ca7&encoded=0&v=paper_preview&mkt=zh-cn
[48] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J].Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133 http://cn.bing.com/academic/profile?id=0fe723a10e1cf435b6835815c34e0050&encoded=0&v=paper_preview&mkt=zh-cn
[49] Pu Mingbo, Wang Min, Hu Chenggang, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J].Optics Express, 2012, 20(23): 25513-25519. doi: 10.1364/OE.20.025513 http://cn.bing.com/academic/profile?id=526a26a0a852803935d415dd02305da3&encoded=0&v=paper_preview&mkt=zh-cn
[50] Ye Dexin, Wang Zhiyu, Xu Kuiwen, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption[J]. Physical Review Letters, 2013, 111(18): 187402. doi: 10.1103/PhysRevLett.111.187402 http://cn.bing.com/academic/profile?id=05768e79b9f2da1e64dac57c194bc714&encoded=0&v=paper_preview&mkt=zh-cn
[51] Dirdal C A, Skaar J. Superpositions of Lorentzians as the class of causal functions[J]. Physical Review A, 2013, 88(3): 033834. doi: 10.1103/PhysRevA.88.033834 http://adsabs.harvard.edu/abs/2013PhRvA..88c3834D
[52] Jiang Zhihao, Yun S, Lin Lan, et al. Tailoring dispersion for broadband low-loss optical metamaterials using deep- subwavelength inclusions[J]. Scientific Reports, 2013, 3: 1571. doi: 10.1038/srep01571 http://cn.bing.com/academic/profile?id=b21caa104957eddd06a9cb54b7f3b47d&encoded=0&v=paper_preview&mkt=zh-cn
[53] Luo Xiangang, Ishihara T. Sub 100 nm lithography based on plasmon polariton resonance[C]. Proceedings of 2003 International Microprocesses and Nanotechnology Conference, Tokyo, Japan, 2003: 138-139.
https://www.researchgate.net/publication/4056383_Sub_100_nm_lithography_based_on_plasmon_polariton_resonance [54] Yao Hanmin, Yu Guobin, Yan Peiying, et al. Patterning sub 100 nm isolated patterns with 436 nm lithography[C]. Proceedings of 2003 International Microprocesses and Nanotechnology Conference, Tokyo, Japan, 2003: 130.
https://www.researchgate.net/publication/4056384_Patterning_sub_100_nm_isolated_patterns_with_436_nm_lithography [55] Wang Changtao, Gao Ping, Zhao Zeyu, et al. Deep sub- wavelength imaging lithography by a reflective plasmonic slab[J]. Optics Express, 2013, 21(18): 20683-20691. doi: 10.1364/OE.21.020683 http://cn.bing.com/academic/profile?id=c90e99f00d6385849eabfe1396b50702&encoded=0&v=paper_preview&mkt=zh-cn
[56] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805- 18812. doi: 10.1039/C5NR05153C http://cn.bing.com/academic/profile?id=61b3ce5b532b20dc4b761873deebba79&encoded=0&v=paper_preview&mkt=zh-cn
[57] Zhao Zeyu, Luo Yunfei, Zhang Wei, et al. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination[J]. Scientific Reports, 2015, 5: 15320. doi: 10.1038/srep15320 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609954/
[58] Liu Zhaowei, Lee H, Xiong Yi, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368 http://cn.bing.com/academic/profile?id=ef83e8b00acb968384fdb92aff2d9293&encoded=0&v=paper_preview&mkt=zh-cn
[59] Ren Guowei, Wang Changtao, Yi Guangwei, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer[J]. Plasmonics, 2013, 8(2): 1065-1072. doi: 10.1007/s11468-013-9510-5 https://link.springer.com/content/pdf/10.1007%2Fs11468-013-9510-5.pdf
[60] Liu Ling, Liu Kaipeng, Zhao Zeyu, et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 2016, 6: 95973-95978. doi: 10.1039/C6RA17098F http://cn.bing.com/academic/profile?id=0478b28403aef5bbc711902553458841&encoded=0&v=paper_preview&mkt=zh-cn
[61] Sun Jingbo, Xu T, Litchinitser N M. Experimental demonstration of demagnifying hyperlens[J]. Nano Letters, 2016, 16(12): 7905- 7909. doi: 10.1021/acs.nanolett.6b04175 http://cn.bing.com/academic/profile?id=a2eaaf41f5243436596d25971756b3f5&encoded=0&v=paper_preview&mkt=zh-cn
[62] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907 http://cn.bing.com/academic/profile?id=bc8f84ad0f112bc5e91bc3c77ae4ffac&encoded=0&v=paper_preview&mkt=zh-cn
[63] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780. doi: 10.1126/science.1126493 http://cn.bing.com/academic/profile?id=7116a856c7227091b9ee5c5445dbc02f&encoded=0&v=paper_preview&mkt=zh-cn
[64] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. http://cn.bing.com/academic/profile?id=8691ae2356f7b05dd4ea2a6eb35da07a&encoded=0&v=paper_preview&mkt=zh-cn
[65] Hashemi H, Zhang Baile, Joannopoulos J D, et al. Delay-bandwidth and delay-loss limitations for cloaking of large objects[J]. Physical Review Letters, 2010, 104(25): 253903. doi: 10.1103/PhysRevLett.104.253903 http://cn.bing.com/academic/profile?id=5565bf48ce4a7eb36a5fdee83b052f64&encoded=0&v=paper_preview&mkt=zh-cn
[66] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901 http://cn.bing.com/academic/profile?id=96f11cccff653794cf0deb48edb5fb50&encoded=0&v=paper_preview&mkt=zh-cn
[67] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369. doi: 10.1126/science.1166949 http://cn.bing.com/academic/profile?id=a1adaf6c0f4a2dd3918f3b67fe5fd9c7&encoded=0&v=paper_preview&mkt=zh-cn
[68] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics[J]. Nature Materials, 2009, 8(7): 568-571. doi: 10.1038/nmat2461 http://cn.bing.com/academic/profile?id=f8bf71e18f856bd30d19fbf659d7e308&encoded=0&v=paper_preview&mkt=zh-cn
[69] Gabrielli L H, Cardenas J, Poitras C B, et al. Silicon nanostructure cloak operating at optical frequencies[J]. Nature Photonics, 2009, 3(8): 461-463. doi: 10.1038/nphoton.2009.117 http://cn.bing.com/academic/profile?id=7d18b7394735e8c28ecf37bb1516e184&encoded=0&v=paper_preview&mkt=zh-cn
[70] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129-132. doi: 10.1038/nmat2610 http://cn.bing.com/academic/profile?id=cdb1280ea9a10df7831b0c2c5fe7a53e&encoded=0&v=paper_preview&mkt=zh-cn
[71] Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1(8): 124. doi: 10.1038/ncomms1126 https://images.nature.com/original/nature-assets/ncomms/journal/v1/n8/extref/ncomms1126-s1.pdf
[72] Zentgraf T, Liu Yongmin, Mikkelsen M H, et al. Plasmonic Luneburg and Eaton lenses[J]. Nature Nanotechnology, 2011, 6(3): 151-155. doi: 10.1038/nnano.2010.282 http://cn.bing.com/academic/profile?id=0b8f8d0df321a54fb197cef716006a41&encoded=0&v=paper_preview&mkt=zh-cn
[73] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106. doi: 10.1063/1.3184594 https://www.researchgate.net/profile/Alexander_Kildishev/publication/224568907_Optical_black_hole_Broadband_omnidirectional_light_absorber/links/5764577008ae421c44830fe5.pdf?origin=publication_detail
[74] Cheng Qiang, Cui Tiejun, Jiang Weixiang, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006. doi: 10.1088/1367-2630/12/6/063006 http://cn.bing.com/academic/profile?id=937a0fd09c5189a91ce3bdd090eed1c3&encoded=0&v=paper_preview&mkt=zh-cn
[75] Sheng Chong, Liu Hui, Wang Yueheng, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902-906. doi: 10.1038/nphoton.2013.247 http://cn.bing.com/academic/profile?id=6190ca18d8e4bdad185ac392da132898&encoded=0&v=paper_preview&mkt=zh-cn
[76] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822 http://cn.bing.com/academic/profile?id=3d44064ff65ccc97e2384f1044019d3a&encoded=0&v=paper_preview&mkt=zh-cn
[77] Ni Xingjie, Wong Zijing, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310- 1314. doi: 10.1126/science.aac9411 http://cn.bing.com/academic/profile?id=e15b951cc91729240bb4fa5ece9090fa&encoded=0&v=paper_preview&mkt=zh-cn
[78] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905 http://cn.bing.com/academic/profile?id=b78273d74cd5614154bdaf7784aa4dc6&encoded=0&v=paper_preview&mkt=zh-cn
[79] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396 http://cn.bing.com/academic/profile?id=259f095cbe7ff2ba5c98f728e70f5691&encoded=0&v=paper_preview&mkt=zh-cn
[80] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154 http://cn.bing.com/academic/profile?id=dfe2fe07fcdb148689145298ca73a831&encoded=0&v=paper_preview&mkt=zh-cn
[81] Lier E, Werner D H, Scarborough C P, et al. An octave- bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10(3): 216-222. doi: 10.1038/nmat2950 http://cn.bing.com/academic/profile?id=a3cae11244c0c19d9d84f08e3de23223&encoded=0&v=paper_preview&mkt=zh-cn
[82] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902. doi: 10.1103/PhysRevLett.89.213902 http://cn.bing.com/academic/profile?id=98048a93b616b2d9a4e06763c9e13601&encoded=0&v=paper_preview&mkt=zh-cn
[83] Wang Min, Huang Cheng, Pu Mingbo, et al. Electric-controlled scanning Luneburg lens based on metamaterials[J]. Applied Physics A, 2013, 111(2): 445-450. doi: 10.1007/s00339-013-7603-9 https://rd.springer.com/content/pdf/10.1007%2Fs00339-013-7603-9.pdf
[84] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3): 438-483. doi: 10.1364/AOP.1.000438
[85] Fang Zheyu, Fan Linran, Lin Chenfang, et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 2011, 11(4): 1676-1680. doi: 10.1021/nl200179y http://cn.bing.com/academic/profile?id=aa7d0c005b3f03730f233054d3191932&encoded=0&v=paper_preview&mkt=zh-cn
[86] Greffet J J. Nanoantennas for light emission[J].Science, 2005, 308(5728): 1561-1562. doi: 10.1126/science.1113355 http://cn.bing.com/academic/profile?id=bf8788c85db2e269df6179c56fb91a4b&encoded=0&v=paper_preview&mkt=zh-cn
[87] Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820-822. doi: 10.1126/science.1071895 http://cn.bing.com/academic/profile?id=1f2c16d28b7d4367683903ffa38d1a87&encoded=0&v=paper_preview&mkt=zh-cn
[88] Martín-Moreno L, Garcia-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Physical Review Letters, 2003, 90(16): 167401. doi: 10.1103/PhysRevLett.90.167401 http://cn.bing.com/academic/profile?id=ab377011cc89dfa64e67c624acd03cb3&encoded=0&v=paper_preview&mkt=zh-cn
[89] Wang Changtao, Du Chunlei, Luo Xiangang. Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film[J]. Physical Review B, 2006, 74(24): 245403. doi: 10.1103/PhysRevB.74.245403 http://cn.bing.com/academic/profile?id=f1e7c57d625c4986077652d3991aca81&encoded=0&v=paper_preview&mkt=zh-cn
[90] Wang Changtao, Du Chunlei, Lv Yueguang, et al. Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves[J]. Optics Express, 2006, 14(12): 5671-5681. doi: 10.1364/OE.14.005671 http://cn.bing.com/academic/profile?id=7dbcf05642f0122e393c6ea8fa7536fa&encoded=0&v=paper_preview&mkt=zh-cn
[91] Li X, Zhao Z, Feng Q, et al. Abnormal nearly homogeneous radiation by slit-grooves structure[J]. Applied Physics B, 2011, 102(4): 851-855. https://link.springer.com/content/pdf/10.1007/s00340-010-4160-1.pdf
[92] Yu Nanfang, Kats M A, Pflügl C, et al. Multi-beam multi-wavelength semiconductor lasers[J]. Applied Physics Letters, 2009, 95(16): 161108. doi: 10.1063/1.3253713 http://cn.bing.com/academic/profile?id=c6a506b0be72db8e1339d9700d8f2194&encoded=0&v=paper_preview&mkt=zh-cn
[93] Yu Nanfang, Fan J, Wang Qijie, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nature Photonics, 2008, 2(9): 564-570. doi: 10.1038/nphoton.2008.152 http://cn.bing.com/academic/profile?id=153d0ff798dd345bf9217d95e29c4d1b&encoded=0&v=paper_preview&mkt=zh-cn
[94] Yu Nanfang, Capasso F. Wavefront engineering for mid-infrared and terahertz quantum cascade lasers[Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B18-B35. doi: 10.1364/JOSAB.27.000B18 http://cn.bing.com/academic/profile?id=c8458ad2acbf642ba77cd911ad8dd5a1&encoded=0&v=paper_preview&mkt=zh-cn
[95] Aouani H, Mahboub O, Bonod N, et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations[J]. Nano Letters, 2011, 11(2): 637-644. doi: 10.1021/nl103738d http://cn.bing.com/academic/profile?id=ef5ed5db0224b21f46e0ca2a9b6715fa&encoded=0&v=paper_preview&mkt=zh-cn
[96] Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nature Communications, 2011, 2: 283. doi: 10.1038/ncomms1286 http://cn.bing.com/academic/profile?id=0c04264f6c7ce9608d758b3b3f9364f0&encoded=0&v=paper_preview&mkt=zh-cn
[97] Gorodetski Y, Drezet A, Genet C, et al. Generating far-field orbital angular momenta from near-field optical chirality[J]. Physical Review Letters, 2013, 110(20): 203906. doi: 10.1103/PhysRevLett.110.203906 http://cn.bing.com/academic/profile?id=9c9d29fb0e1016959e609c7c9214da44&encoded=0&v=paper_preview&mkt=zh-cn
[98] Pu Mingbo, Ma Xiaoliang, Zhao Zeyu, et al. Near-field collimation of light carrying orbital angular momentum with bull's-eye- assisted plasmonic coaxial waveguides[J]. Scientific Reports, 2015, 5: 12108. doi: 10.1038/srep12108 http://cn.bing.com/academic/profile?id=5a797682915dddc64db532dae1ed6afe&encoded=0&v=paper_preview&mkt=zh-cn
[99] Yu Nanfang, Wang Qijie, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9): 730-735. doi: 10.1038/nmat2822 http://cn.bing.com/academic/profile?id=27afff39cda36a5f99719368a9a7b2fc&encoded=0&v=paper_preview&mkt=zh-cn
[100] Huang Cheng, Zhao Zeyu, Feng Qin, et al. Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 912-915. doi: 10.1109/LAWP.2009.2028587 http://cn.bing.com/academic/profile?id=f297e975240ab332d00ede3730ff7b32&encoded=0&v=paper_preview&mkt=zh-cn
[101] Huang Cheng, Du Chunlei, Luo Xiangang. A waveguide slit array antenna fabricated with subwavelength periodic grooves[J]. Applied Physics Letters, 2007, 91(14): 143512. doi: 10.1063/1.2794727 http://cn.bing.com/academic/profile?id=1ea8e5eb11c694c47a7ad6363d60926f&encoded=0&v=paper_preview&mkt=zh-cn
[102] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753
[103] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885 http://cn.bing.com/academic/profile?id=c5254c064afcb8e3f784753ffe628439&encoded=0&v=paper_preview&mkt=zh-cn
[104] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501. doi: 10.1063/1.2811711 http://cn.bing.com/academic/profile?id=b9c8649879caf868d3f9db33f855b63f&encoded=0&v=paper_preview&mkt=zh-cn
[105] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y http://cn.bing.com/academic/profile?id=e5b7ac6de823a8092f704922fdd1bd5b&encoded=0&v=paper_preview&mkt=zh-cn
[106] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163. doi: 10.1021/nl303841n http://cn.bing.com/academic/profile?id=4b4b95f22e8eae8eb7e63137bc0b7117&encoded=0&v=paper_preview&mkt=zh-cn
[107] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501. doi: 10.1063/1.2894183 http://cn.bing.com/academic/profile?id=c19d608b4781864e4a77bd39100f4bc4&encoded=0&v=paper_preview&mkt=zh-cn
[108] Sun Jingbo, Wang Xi, Xu T, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726-2729. doi: 10.1021/nl500658n http://cn.bing.com/academic/profile?id=f239ff17d26e0bf11c745aedaaa63a5f&encoded=0&v=paper_preview&mkt=zh-cn
[109] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212 http://cn.bing.com/academic/profile?id=2ff96a940b1896c108787289bda53029&encoded=0&v=paper_preview&mkt=zh-cn
[110] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi: 10.1038/ncomms8069 http://cn.bing.com/academic/profile?id=088e0240a1083e5cad0467e1fe7d890d&encoded=0&v=paper_preview&mkt=zh-cn
[111] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292 http://cn.bing.com/academic/profile?id=9b1920f81ea36dc3048b2597470a05de&encoded=0&v=paper_preview&mkt=zh-cn
[112] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330. doi: 10.1063/1.1539300 https://www.researchgate.net/profile/Avi_Niv/publication/234940881_Polarization_dependent_focusing_lens_by_use_of_quantized_Pancharatnam-Berry_phase_diffractive_optics/links/53d9df500cf2631430c7ddfc/Polarization-dependent-focusing-lens-by-use-of-quantized-Pancharatnam-Berry-phase-diffractive-optics.pdf
[113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686 http://cn.bing.com/academic/profile?id=578f5dd17de8d3ee281e3ca8478ab393&encoded=0&v=paper_preview&mkt=zh-cn
[114] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72. https://engineering.purdue.edu/~shalaev/Publication_list_files/LSA_Ni_2013.pdf
[115] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168 http://cn.bing.com/academic/profile?id=85652c87276c02176037c3e1a83ba4db&encoded=0&v=paper_preview&mkt=zh-cn
[116] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850 https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201204850
[117] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484 http://cn.bing.com/academic/profile?id=2b7e83eac56187b3bcc0ab9a42e68979&encoded=0&v=paper_preview&mkt=zh-cn
[118] Zhang Xueqian, Xu Yuehong, Yue Weisheng, et al. Anomalous surface wave launching by handedness phase control[J]. Advanced Materials, 2015, 27(44): 7123-7129. doi: 10.1002/adma.201502008 http://cn.bing.com/academic/profile?id=b4f93907b0cfa3f4b059a881a126751e&encoded=0&v=paper_preview&mkt=zh-cn
[119] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668 http://cn.bing.com/academic/profile?id=b5fb9f2c48e83d57d61c99facfd15887&encoded=0&v=paper_preview&mkt=zh-cn
[120] Li Yongfeng, Zhang Jieqiu, Qu Shaobo, et al. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces[J]. Applied Physics Letters, 2014, 104(22): 221110. doi: 10.1063/1.4881935 https://www.researchgate.net/profile/Jiafu_Wang2/publication/272315225_Wideband_radar_cross_section_reduction_using_two-dimensional_phase_gradient_metasurfaces/links/56a49b4808aeef24c58b9466.pdf?origin=publication_detail
[121] Giovampaola C D, Engheta N. Digital metamaterials[J]. Nature Materials, 2014, 13(12):1115-1121. doi: 10.1038/nmat4082 https://arxiv.org/pdf/1403.6488
[122] Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218. https://www.researchgate.net/profile/Xiang_Wan2/publication/278715438_Coding_metamaterials_digital_metamaterials_and_programmable_metamaterials/links/559221c508ae15962d8e49e5.pdf
[123] Gao Lihua, Cheng Qiang, Yang Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science amp; Applications, 2015, 4(9): e324. doi: 10.1038/lsa.2015.97 https://www.researchgate.net/profile/Weiwei_Liu27/publication/281995829_Broadband_diffusion_of_terahertz_waves_by_multi-bit_coding_metasurfaces/links/5600c8b008ae07629e52b1bb.pdf
[124] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524 http://cn.bing.com/academic/profile?id=c701f28ffbbb80887a24326c269bb1ac&encoded=0&v=paper_preview&mkt=zh-cn
[125] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276. (in press http://www.nature.com/lsa/journal/v6/n6/fig_tab/lsa2016276f4.html
[126] Sun Hongbo. The mystical interlinks: Mechanics, religion or optics?[J]. Sci China-Phys Mech Astron, 2016, 59: 614202. doi: 10.1007/s11433-015-5763-7 https://link.springer.com/article/10.1007/s11433-015-5763-7
[127] Hong Minghui. Metasurface wave in planar nano-photonics[J].Science Bulletin, 2016, 61(2):112-113. http://cn.bing.com/academic/profile?id=26c1212c04397e53f41665cc0c961068&encoded=0&v=paper_preview&mkt=zh-cn
[128] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam-berry metasurface with maximal cross- polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195-1200. doi: 10.1002/adma.201405047 http://cn.bing.com/academic/profile?id=b5fb0ef40bd78d688463d922bc33d120&encoded=0&v=paper_preview&mkt=zh-cn
[129] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 http://cn.bing.com/academic/profile?id=a9bfcebc38fcdaefb59829d6afdba37b&encoded=0&v=paper_preview&mkt=zh-cn
[130] Shen Xiaopeng, Cui Tiejun, Zhao Junming, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10): 9401-9407. doi: 10.1364/OE.19.009401 http://cn.bing.com/academic/profile?id=bd534f02cba879585f397b9bebc53103&encoded=0&v=paper_preview&mkt=zh-cn
[131] Ye Yuqian, Jin Yi, He Sailing. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2010, 27(3): 498-504. doi: 10.1364/JOSAB.27.000498 http://cn.bing.com/academic/profile?id=95b53617d759b4cb3a1680cd5b46969b&encoded=0&v=paper_preview&mkt=zh-cn
[132] Grant J, Ma Yong, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17): 3476-3478. doi: 10.1364/OL.36.003476 http://cn.bing.com/academic/profile?id=9ef2faae695dd828e83681585266dbbe&encoded=0&v=paper_preview&mkt=zh-cn
[133] Hendrickson J, Guo Junpeng, Zhang Boyang, et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures[J]. Optics Letters, 2012, 37(3): 371-373. doi: 10.1364/OL.37.000371 http://cn.bing.com/academic/profile?id=0ca46335e1406b12e3aa17d02bd46f7f&encoded=0&v=paper_preview&mkt=zh-cn
[134] Cui Yanxia, Xu Jun, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101. doi: 10.1063/1.3672002 http://cn.bing.com/academic/profile?id=c86ef575ca87a9a19775760bab18cabe&encoded=0&v=paper_preview&mkt=zh-cn
[135] Wang Jing, Chen Yiting, Chen Xi, et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Optics Express, 2011, 19(15): 14726-14734. doi: 10.1364/OE.19.014726 http://cn.bing.com/academic/profile?id=4f98667cfa967898f5c6eae1f53cd4e9&encoded=0&v=paper_preview&mkt=zh-cn
[136] Hao Jiaming, Zhou Lei, Qiu Min. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16): 165107. doi: 10.1103/PhysRevB.83.165107 http://cn.bing.com/academic/profile?id=b8259359665e7ab7ef8de690620c5f7f&encoded=0&v=paper_preview&mkt=zh-cn
[137] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs[J]. Plasmonics, 2014, 9(4): 951-957. doi: 10.1007/s11468-014-9701-8 https://rd.springer.com/content/pdf/10.1007%2Fs11468-014-9701-8.pdf
[138] Ding Fei, Cui Yanxia, Ge Xiaochen, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 3506. http://cn.bing.com/academic/profile?id=36b525206debcce4c2a3110cf7853446&encoded=0&v=paper_preview&mkt=zh-cn
[139] Cui Yanxia, Fung K H, Xu Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447. doi: 10.1021/nl204118h http://cn.bing.com/academic/profile?id=55ad77705f82e14587cbc5df53541763&encoded=0&v=paper_preview&mkt=zh-cn
[140] Yin Sheng, Zhu Jianfei, Xu Wendao, et al. High-performance terahertz wave absorbers made of silicon-based metamaterials[J].Applied Physics Letters, 2015, 107(7): 73903. doi: 10.1063/1.4929151 https://www.osti.gov/scitech/biblio/22489131
[141] Zang Xiaofei, Shi Cheng, Chen Lin, et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings[J]. Scientific Reports, 2015, 5: 8091. doi: 10.1038/srep08091 http://cn.bing.com/academic/profile?id=d49f95fe280aebf28789a05f549f9f79&encoded=0&v=paper_preview&mkt=zh-cn
[142] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491 http://cn.bing.com/academic/profile?id=5ab82c9075ee846dcecb5940bc9c4d22&encoded=0&v=paper_preview&mkt=zh-cn
[143] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566-27575. doi: 10.1364/OE.23.027566 http://cn.bing.com/academic/profile?id=2fb80ca3b7e035254e976dd7ee0fa8ca&encoded=0&v=paper_preview&mkt=zh-cn
[144] Shi Cheng, Zang Xiaofei, Wang Yiqiao, et al. A polarization-independent broadband terahertz absorber[J]. Applied Physics Letters, 2014, 105(3): 031104. doi: 10.1063/1.4890617 https://www.researchgate.net/publication/264199519_A_polarization-independent_broadband_terahertz_absorber
[145] Li Wei, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959-7965. doi: 10.1002/adma.v26.47 http://cn.bing.com/academic/profile?id=144eb654dec427fe4c2b115941162be5&encoded=0&v=paper_preview&mkt=zh-cn
[146] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber[J]. ACS Photonics, 2014, 1(3): 279-284. doi: 10.1021/ph400172u http://cn.bing.com/academic/profile?id=2d4c856dae00aac1c80020133cbcb39a&encoded=0&v=paper_preview&mkt=zh-cn
[147] Zhao Junming, Sun Liang, Zhu Bo, et al. One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial[J]. Optics Express, 2015, 23(4): 4658-4665. doi: 10.1364/OE.23.004658 http://cn.bing.com/academic/profile?id=494228363ef33188b3947b868e6b13e5&encoded=0&v=paper_preview&mkt=zh-cn
[148] Hao Jiaming, Yuan Yu, Ran Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908 http://cn.bing.com/academic/profile?id=bea4f6d9d14f0f5db998c4773cfa6a33&encoded=0&v=paper_preview&mkt=zh-cn
[149] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J].Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399 http://cn.bing.com/academic/profile?id=aa5ba7b5d2a334adb13f1ae52e2bfe99&encoded=0&v=paper_preview&mkt=zh-cn
[150] Pu Mingbo, Feng Qin, Wang Min, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination[J]. Optics Express, 2012, 20(3): 2246-2254. doi: 10.1364/OE.20.002246 http://cn.bing.com/academic/profile?id=9b7fe551973113135ff8b189625147eb&encoded=0&v=paper_preview&mkt=zh-cn
[151] Pu Mingbo, Feng Qin, Hu Chenggang, et al. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film[J]. Plasmonics, 2012, 7(4): 733-738. doi: 10.1007/s11468-012-9365-1 https://link.springer.com/content/pdf/10.1007%2Fs11468-012-9365-1
[152] Wang Yanqin, Pu Mingbo, Hu Chenggang, et al. Dynamic manipulation of polarization states using anisotropic meta-surface[J].Optics Communications, 2014, 319: 14-16. doi: 10.1016/j.optcom.2013.12.043 https://www.sciencedirect.com/science/article/pii/S0030401813011802
[153] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J].Advanced Optical Matererials, 2016, 4: 659-663. doi: 10.1002/adom.v4.5 http://cn.bing.com/academic/profile?id=5c3aaf187c9faa74cb6ad5b18dfdefc0&encoded=0&v=paper_preview&mkt=zh-cn
[154] Li Sucheng, Luo Jie, Anwar S, et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation[J]. Physical Review B, 2015, 91(22): 220301. doi: 10.1103/PhysRevB.91.220301 http://cn.bing.com/academic/profile?id=38903569ae1df605a106a0db32eb651d&encoded=0&v=paper_preview&mkt=zh-cn
[155] Li Sucheng, Duan Qian, Li Shuo, et al. Perfect electromagnetic absorption at one-atom-thick scale[J]. Applied Physics Letters, 2015, 107: 181112. doi: 10.1063/1.4935427 https://www.researchgate.net/profile/Bo_Hou3/publication/283848449_Perfect_electromagnetic_absorption_at_one-atom-thick_scale/links/564acd2d08ae295f644ffb64.pdf?origin=publication_detail
[156] Mousavi S A, Plum E, Shi Jinhui, et al. Coherent control of optical polarization effects in metamaterials[J]. Scientific Reports, 2015, 5: 8977. doi: 10.1038/srep08977 http://cn.bing.com/academic/profile?id=873674e1941bbc44c263219e035f91de&encoded=0&v=paper_preview&mkt=zh-cn
[157] Papaioannou M, Plum E, Valente J, et al. Two-dimensional control of light with light on metasurfaces[J]. Light: Science & Applications, 2016, 5: e16070. http://cn.bing.com/academic/profile?id=3b9da0e6a0d152ee53491148dd8c8184&encoded=0&v=paper_preview&mkt=zh-cn
[158] Fan Kebin, Padilla W J. Dynamic electromagnetic metamaterials[J]. Materialstoday, 2015, 18(1): 39-50. https://www.sciencedirect.com/science/article/pii/S1369702114002600
[159] Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 16-22. doi: 10.1038/nnano.2015.302 http://cn.bing.com/academic/profile?id=039cddfbf6821291318495d5e0022175&encoded=0&v=paper_preview&mkt=zh-cn
[160] Wang Min, Hu Chenggang, Pu Mingbo, et al. Electrical tunable L-band absorbing material for two polarisations[J]. Electronics Letters, 2012, 48(16): 1002-1003. doi: 10.1049/el.2012.1318 http://cn.bing.com/academic/profile?id=b2a65eaafe2f40dd0ef4972aa36b8311&encoded=0&v=paper_preview&mkt=zh-cn
[161] Wu Xiaoyu, Hu Chenggang, Wang Yanqin, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency[J]. AIP Advances, 2013, 3(2): 022114. doi: 10.1063/1.4792069 https://core.ac.uk/display/28351505
[162] Zhu Bo, Feng Yijun, Zhao Junming, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Applied Physics Letters, 2010, 97(5): 051906. doi: 10.1063/1.3477960 http://cn.bing.com/academic/profile?id=afdaad81222b179b84b092d5005794b8&encoded=0&v=paper_preview&mkt=zh-cn
[163] Zhu Bo, Feng Yijun, Zhao Junming, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22): 23196-23203. doi: 10.1364/OE.18.023196 http://cn.bing.com/academic/profile?id=050402831636bb2fd473e8b5d95da2bf&encoded=0&v=paper_preview&mkt=zh-cn
[164] Zhu Bo, Zhao Junming, Feng Yijun. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 2013, 3: 3059. doi: 10.1038/srep03059 http://cn.bing.com/academic/profile?id=f404094a39f001a6b5c94f00f698ebf8&encoded=0&v=paper_preview&mkt=zh-cn
[165] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945-949. doi: 10.1002/adom.v2.10 http://cn.bing.com/academic/profile?id=25b36ec1baafc7b00a1bee8709c74f8a&encoded=0&v=paper_preview&mkt=zh-cn
[166] Cui Jianhua, Huang Cheng, Pan Wenbo, et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror[J].Scientific Reports, 2016, 6: 30771. http://cn.bing.com/academic/profile?id=ac88b9d36d095c7a6d1315dd55ea8b39&encoded=0&v=paper_preview&mkt=zh-cn
[167] Xu Hexiu, Sun Shulin, Tang Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi: 10.1038/srep27503 http://cn.bing.com/academic/profile?id=a056d8b9695c2d082c33c50348cee5af&encoded=0&v=paper_preview&mkt=zh-cn
[168] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618 http://cn.bing.com/academic/profile?id=b11056cd5682cd5c93db5adc0c01c7b8&encoded=0&v=paper_preview&mkt=zh-cn
[169] Chen J, Wang Weisong, Ji Fang, et al. Variable-focusing microlens with microfluidic chip[J]. Journal of Micromechanics and Microengineering, 2004, 14(5): 675-680. doi: 10.1088/0960-1317/14/5/003 http://cn.bing.com/academic/profile?id=52b35bcc1c38cd079e2419fa1d0f8849&encoded=0&v=paper_preview&mkt=zh-cn
[170] Shaltout A M, Kildishev A V, Shalaev V M. Evolution of photonic metasurfaces: from static to dynamic[J]. Journal of the Optical Society of America B, 2016, 33(3): 501-510. doi: 10.1364/JOSAB.33.000501 http://cn.bing.com/academic/profile?id=7c17de8cb64344a82ac378070a191f1b&encoded=0&v=paper_preview&mkt=zh-cn
[171] Liu Ming, Yin Xiaobo, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64- 67. doi: 10.1038/nature10067 http://cn.bing.com/academic/profile?id=74d8e3c815a78a0a93f6419114f20cf1&encoded=0&v=paper_preview&mkt=zh-cn
[172] Fang Zheyu, Wang Yumin, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14(1): 299-304. doi: 10.1021/nl404042h http://cn.bing.com/academic/profile?id=434e4cc71381fa740ecbeeae784cd9b0&encoded=0&v=paper_preview&mkt=zh-cn
[173] Li Wei, Chen Bigeng, Meng Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959. doi: 10.1021/nl404356t http://cn.bing.com/academic/profile?id=3c7e526be4dd820f6b1e6305fc9354f1&encoded=0&v=paper_preview&mkt=zh-cn
[174] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020 http://cn.bing.com/academic/profile?id=e879226c9f58c596bac4456d726712e8&encoded=0&v=paper_preview&mkt=zh-cn
[175] Wang Dacheng, Zhang Lingchao, Gong Yandong, et al. Multiband switchable terahertz quarter-wave plates via phase- change metasurfaces[J]. IEEE Photonics Journal, 2016, 8(1): 5500308. http://cn.bing.com/academic/profile?id=bfc31343b32601b251e84a16309c7825&encoded=0&v=paper_preview&mkt=zh-cn
[176] Wang Qian, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247 http://cn.bing.com/academic/profile?id=d757c2064eb2ca693595aea08453bdfb&encoded=0&v=paper_preview&mkt=zh-cn
[177] Chen Yiguo, Li Xiong, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi: 10.1038/srep08660 http://adsabs.harvard.edu/abs/2015NatSR...5E8660C
-
访问统计