基于最小二乘图像坐标修正的中阶梯光谱仪谱图还原算法

欧阳羽轩,傅骁,段发阶,等. 基于最小二乘图像坐标修正的中阶梯光谱仪谱图还原算法[J]. 光电工程,2024,51(7): 240134. doi: 10.12086/oee.2024.240134
引用本文: 欧阳羽轩,傅骁,段发阶,等. 基于最小二乘图像坐标修正的中阶梯光谱仪谱图还原算法[J]. 光电工程,2024,51(7): 240134. doi: 10.12086/oee.2024.240134
Ouyang Y X, Fu X, Duan F J, et al. Spectral reduction algorithm for echelle grating spectrometer based on least-squares image coordinate correction[J]. Opto-Electron Eng, 2024, 51(7): 240134. doi: 10.12086/oee.2024.240134
Citation: Ouyang Y X, Fu X, Duan F J, et al. Spectral reduction algorithm for echelle grating spectrometer based on least-squares image coordinate correction[J]. Opto-Electron Eng, 2024, 51(7): 240134. doi: 10.12086/oee.2024.240134

基于最小二乘图像坐标修正的中阶梯光谱仪谱图还原算法

  • 基金项目:
    国家自然科学基金资助项目(U2241265,92360306,52205573,61971307,62231011); 航空科学基金项目(2022Z060048001); 中国博士后科学基金项目(2022M720106); 装备预研教育部联合基金项目(8091B022144); 国防科技重点实验室基金项目(6142212210304); 广东省重点研发计划项目(2020B0404030001); 霍英东教育基金会资助项目(171055); 青年人才托举工程(2021QNRC001)
详细信息
    作者简介:
    *通讯作者: 傅骁,fuxiao215@tju.edu.cn。
  • 中图分类号: O433.4

Spectral reduction algorithm for echelle grating spectrometer based on least-squares image coordinate correction

More Information
  • 中阶梯光谱仪具有交叉色散特征,二维谱图还原是决定其波长测量准确性的关键环节,但是环境变化、加工装调等引起的光斑坐标变化对谱图还原精度造成严重影响。本文提出了一种基于最小二乘图像坐标修正的中阶梯光谱仪谱图还原算法,首先提取校准汞灯光源多波长光斑质心坐标,利用理论像点和实际像点坐标构建系数矩阵,通过最小二乘法估计获得二维像面的平移、缩放、旋转系数,再采用多项式拟合减小残差影响,实现不同波长光斑的图像坐标修正,进而实现波长精确解算。实验结果显示,该算法能有效提高中阶梯光谱仪的谱图还原精度,在模拟较大装调误差条件下,修正后坐标与理想坐标偏差小于0.6个像元,证明了该算法具有较高的精度。

  • Overview: Echelle grating spectrometer uses a cross-dispersive optical structure for spectroscopy, forming a two-dimensional spectral image on the image plane. The reduction accuracy of the two-dimensional spectral image is to determine the accuracy of its wavelength measurement, but environmental changes, processing and mounting and other reasons will lead to the error between the actual spot coordinates and the theoretical spot coordinates, and the change of the spot coordinates will have a serious impact on the reduction accuracy of the spectral image. In this paper, a spectrum reduction algorithm for an echelle grating spectrometer based on least squares image coordinate correction is proposed. Firstly, the theoretical spot coordinates of the mercury lamp are recorded by simulation software, and then measurements are made using a calibrated mercury lamp light source, and the background noise reduction and morphological processing of the two-dimensional spectral map are carried out to obtain the center-of-mass coordinates of the actual spot of the wavelength of the mercury lamp, and then the coefficient matrix is constructed by utilizing the theoretical and actual image point coordinates, and then the coefficient matrix is solved from the obtained two-dimensional spectrum by the method of least squares. The coefficient matrix is solved by the least squares method to obtain the fitting coefficients of translation, scaling and rotation of the two-dimensional image plane, and then the polynomial fitting is used to reduce the influence of the residuals, realizing the image coordinate correction of the spot at different wavelengths, and then realize the accurate wavelength solution.

    The experimental results show that the algorithm can effectively improve the spectral image reduction accuracy of the echelle grating spectrometer, and the center of mass extraction error is controlled at 0.6 image elements, and under the simulation of large mounting errors and environmental errors, the corrected coordinates of the measurements of the common elements deviate from their ideal coordinates by less than 0.6 image elements, which proves that the algorithm has high accuracy and provides a basis for the measurement of broad-band atomic emission spectra.

  • 加载中
  • 图 1  中阶梯光栅光谱仪示意图

    Figure 1.  Schematic diagram of the echelle grating spectrometer

    图 2  自由光谱区内中阶梯光谱仪二维光谱图

    Figure 2.  Two-dimensional spectrogram of the echelle grating spectrometer in the free spectrum region

    图 3  谱图还原流程图

    Figure 3.  Spectral reduction flowchart

    图 4  像面光斑示意图

    Figure 4.  Schematic diagram of the image plane spot

    图 5  谱图还原示意图

    Figure 5.  Schematic of spectrogram reduction

    图 6  质心提取示意图。(a)原始图像;(b)添加高斯噪声;(c)背景降噪;(d)边缘提取;(e)连通域分析质心提取; (f) OSTU二极化;(g)灰度权重质心提取

    Figure 6.  Schematic diagram of center of mass extraction. (a) Original image; (b) Addition of Gaussian noise; (c) Background noise reduction; (d) Edge extraction; (e) Connected domain analysis center of mass extraction; (f) OSTU dipolarization; (g) Gray scale weighted center of mass extraction

    图 7  汞氩灯光源成像二维光谱图

    Figure 7.  Two-dimensional spectrogram of mercury-argon light source imaging

    图 8  汞氩灯光源成像光谱对比图

    Figure 8.  Comparison of imaging spectrograms of mercury-argon light sources

    图 9  汞氩灯标定波长谱图坐标偏差

    Figure 9.  Common element wavelength coordinate correction residuals

    图 10  汞氩灯光源成像二维光谱图

    Figure 10.  Two-dimensional spectrogram of mercury-argon light source imaging

    图 11  常见元素波长坐标修正残差

    Figure 11.  Common element wavelength coordinate correction residuals

    图 12  常见元素波长坐标残差补偿后最终偏差值

    Figure 12.  Final deviation after residual compensation of wavelength coordinates of common elements

    表 1  中阶梯光谱仪设计参数

    Table 1.  Echelle grating spectrometer design parameters

    ParameterValue
    Raster etching density/(l·mm−1)79
    Grating flashing angle/°63
    Grating deflection angle/°7
    Prismatic peak angle/°18
    Curvature of a spherical mirror/mm300
    Cylindrical lens curvature/mm34.5
    Detector full resolution2048×2048
    Detector pixel size/μm211×11
    下载: 导出CSV

    表 2  质心提取误差

    Table 2.  Center of mass extraction error

    Error X/pixel Y/pixel Euclidean distance/pixel
    MAE 0.39511 0.37941 0.60333
    MSE 0.18411 0.23683 0.42094
    RMSE 0.42908 0.48665 0.64881
    MAE (OSTU) 2.5928 1.3792 3.0394
    MSE (OSTU) 7.0404 2.6216 9.662
    RMSE (OSTU) 2.6534 1.6191 3.1084
    下载: 导出CSV

    表 3  仿真实验光路参数误差值

    Table 3.  Simulation experiment optical path parameter error value

    Factor Test1 Test2 Test3
    Collimated spherical mirror deflection
    angle difference/°
    0.1 0.2 −0.2
    Grating flashing angle difference/° 0.2 0.2 −0.2
    Grating deflection angle difference/° 0.2 −0.2 0.2
    Prismatic peak angle difference/° 0.05 0.05 −0.05
    Focusing spherical mirror deflection angle/° −0.1 0.1 −0.1
    Image plane X coordinate difference/mm 0.5 −0.1 0.1
    Image plane Y coordinate difference/mm −0.5 0.1 0.1
    Image plane Z coordinate difference/mm 2.0 −1.0 2
    Angle of rotation of image plane difference/° 1.5 0 −1.5
    Temperature difference/℃ 10.0 −10.0 10.0
    Barometric pressure difference/ATM 0.5 0 −0.5
    下载: 导出CSV

    表 4  汞氩灯特征波长光谱信息

    Table 4.  Spectral information on characteristic wavelengths of mercury-argon lamps

    Wavelength/nm Order of diffraction X position/pixel Y position/pixel Wavelength/nm Order of diffraction X position/pixel Y position/pixel
    253.652 88 −1.0108 287.6266 727.294 31 −769.6398 −229.8145
    296.728 75 −259.1705 433.7794 738.398 30 −768.3944 653.3849
    302.150 74 −285.9167 203.6792 750.387 30 −778.3806 −147.5455
    313.155 72 −324.6694 −231.9005 763.511 29 −774.8637 674.6637
    334.148 67 −399.4394 138.8264 772.376 29 −787.3103 113.8959
    365.015 61 −475.8133 409.3228 794.818 28 −790.2125 433.5014
    404.656 55 −549.4312 430.7239 800.616 28 −794.6037 72.0627
    407.783 55 −557.1198 47.3395 811.531 28 −775.0149 −670.483
    435.833 51 −591.7942 492.492 826.452 27 −800.1515 303.6997
    546.074 41 −694.7505 136.294 842.465 27 −778.8817 −732.2836
    576.960 39 −710.6427 −123.4383 852.144 26 −798.1824 645.4346
    579.066 39 −706.8637 −320.3302 866.794 26 −806.3448 −207.1703
    696.543 32 −762.6245 358.3138 912.297 25 −783.509 −894.4498
    706.722 32 −757.8462 −397.779 922.450 24 −811.9811 681.0741
    714.704 31 −761.3504 645.1947
    下载: 导出CSV

    表 5  谱图坐标修正拟合系数

    Table 5.  Spectral coordinate correction fitting factor

    FactorTest1Test2Test3
    A10.99860.99390.9961
    B1−0.02790.00020.0261
    C1−33.6899−2.9814−15.0959
    A20.02900.0043−0.0262
    B20.98760.99490.9993
    C250.1140−15.79328.9989
    下载: 导出CSV

    表 6  常见元素光谱坐标

    Table 6.  Spectral coordinates of common elements

    Wavelength/nm Type of elements X position/pixel Y position/pixel Wavelength/nm Type of elements X position/pixel Y position/pixel
    328.0 Ag −379.2747 325.992 281.6 Mo −183.6679 −186.0624
    308.2 Al −308.3616 −116.4983 588.9 Na −719.3371 160.7838
    249.7 B 32.5311 −56.4979 221.6 Ni 341.3734 153.1065
    230.4 Ba 227.3107 226.7227 213.6 P 464.375 47.4839
    396.8 Ca −534.824 506.7872 220.3 Pb 361.3903 −50.9932
    226.5 Cd 275.5752 57.838 251.6 Si 14.9795 128.6809
    267.7 Cr −102.4702 −88.747 283.9 Sn −199.6097 47.3144
    324.7 Cu −369.9202 101.6626 213.8 Zn 461.5029 −0.894
    259.9 Fe −49.8481 220.8933 334.9 Ti −401.2032 23.8482
    285.2 Mg −202.6585 −192.7362 310.2 V −317.9437 258.7749
    257.6 Mn −32.7989 85.962
    下载: 导出CSV

    表 7  残差多项式拟合系数

    Table 7.  Residual polynomial fitting coefficients

    FactorTest1Test2Test3
    A13.373×10−23.361×10−29.772×10−4
    B1−8.157×10−5−1.153×10−4−2.517×10−6
    C12.640×10−96.465×10−91.724×10−10
    A2−7.852×10−21.142×10−1−1.312×10−2
    B22.221×10−4−3.411×10−43.365×10−5
    C2−9.151×10−91.204×10−9−2.296×10−9
    下载: 导出CSV
  • [1]

    Keliher P N, Wohlers C C. Echelle grating spectrometers in analytical spectrometry[J]. Anal Chem, 1976, 48(3): 333A−340A. doi: 10.1021/ac60367a782

    [2]

    Ma K Q, Chen K X, Zhu N, et al. High-resolution compact on-chip spectrometer based on an echelle grating with densely packed waveguide array[J]. IEEE Photonics J, 2019, 11(1): 4900107. doi: 10.1109/JPHOT.2018.2888592

    [3]

    García M, Aguirre M A, Canals A. A new multinebulizer for spectrochemical analysis: wear metal determination in used lubricating oils by on-line standard dilution analysis (SDA) using inductively coupled plasma optical emission spectrometry (ICP OES)[J]. J Anal At Spectrom, 2020, 35(2): 265−272. doi: 10.1039/C9JA00255C

    [4]

    Cahyadi D, Susilowati E, Arsyansyah M, et al. Development of a rapid-test method for the determination of calcium, zinc, phosphorus, and sulfur in automotive engine oil by WD-XRF (wavelength dispersive x-ray fluorescent)[J]. IOP Conf Ser Mater Sci Eng, 2020, 980: 012050. doi: 10.1088/1757-899X/980/1/012050

    [5]

    Amais R S, Amaral C D B, Fialho L L, et al. Determination of P, S and Si in biodiesel, diesel and lubricating oil using ICP-MS/MS[J]. Anal Methods, 2014, 6(13): 4516−4520. doi: 10.1039/C4AY00279B

    [6]

    Li H L, Wang H B, Huang Y C, et al. Plasma characteristics and quantitative analysis of Pb and Ni in soil based on LIBS technology[J]. Optoelectron Lett, 2020, 16(2): 143−148. doi: 10.1007/s11801-020-9189-8

    [7]

    Vinić M, Aruffo E, Andreoli F, et al. Quantification of heavy metals in oils with µL volume by laser induced breakdown spectroscopy and minimazing of the matrix effect[J]. Spectrochim Acta Part B At Spectrosc, 2020, 164: 105765. doi: 10.1016/j.sab.2020.105765

    [8]

    Nevejans D, Neefs E, Van Ransbeeck E, et al. Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 μm[J]. Appl Opt, 2006, 45(21): 5191−5206. doi: 10.1364/AO.45.005191

    [9]

    崔涛, 尹禄, 梁培, 等. 中阶梯光栅光谱仪谱图还原技术发展与展望(特邀)[J]. 激光与光电子学进展, 2024, 61(3): 0330003. doi: 10.3788/LOP231373

    Cui T, Yin L, Liang P, et al. Development and prospects of spectral reduction technology of echelle spectrometer (Invited)[J]. Laser Optoelectron Prog, 2024, 61(3): 0330003. doi: 10.3788/LOP231373

    [10]

    Liu K L, Hieftje G M. Investigation of wavelength calibration for an echelle cross-dispersion spectrometer[J]. J Anal At Spectrom, 2003, 18(10): 1177−1184. doi: 10.1039/b300981p

    [11]

    宁春丽, 齐向东, 陈少杰, 等. 轻小型中阶梯光栅光谱仪光学设计及性能分析[J]. 光谱学与光谱分析, 2012, 32(12): 3406−3410. doi: 10.3964/j.issn.1000-0593(2012)12-3406-05

    Ning C L, Qi X D, Chen S J, et al. Optical design and performance analysis of light and small echelle spectrograph[J]. Spectrosc Spectral Anal, 2012, 32(12): 3406−3410. doi: 10.3964/j.issn.1000-0593(2012)12-3406-05

    [12]

    Finkelstein N A. The measurement of wavelength in echelle spectra[J]. J Opt Soc Am, 1953, 43(2): 90−96. doi: 10.1364/JOSA.43.000090

    [13]

    McNeill J J. Wavelength measurement in echelle spectra[J]. J Opt Soc Am, 1959, 49(5): 441−444. doi: 10.1364/JOSA.49.000441

    [14]

    朱继伟, 孙慈, 杨晋, 等. 基于多项式拟合的中阶梯光栅光谱仪谱图还原[J]. 光学 精密工程, 2020, 28(8): 1627−1633. doi: 10.3788/OPE.20202808.1627

    Zhu J W, Sun C, Yang J, et al. Spectrogram reduction for echelle grating spectrometer based on Polynomial fitting[J]. Opt Precis Eng, 2020, 28(8): 1627−1633. doi: 10.3788/OPE.20202808.1627

    [15]

    唐玉国, 陈少杰, 巴音贺希格, 等. 中阶梯光栅光谱仪的谱图还原与波长标定[J]. 光学 精密工程, 2010, 18(10): 2130−2136. doi: 10.3788/OPE.20101810.2130

    Tang Y G, Chen S J, Bayanheshig, et al. Spectral reducing of cross-dispersed echelle spectrograph and its wavelength calibration[J]. Opt Precis Eng, 2010, 18(10): 2130−2136. doi: 10.3788/OPE.20101810.2130

    [16]

    傅骁. LIBS中阶梯光栅光谱仪实现技术及数据处理算法研究[D]. 天津: 天津大学, 2018. https://doi.org/10.27356/d.cnki.gtjdu.2018.000097.

    Fu X. Implementation of LIBS echelle spectrometer and research on data processing method[D]. Tianjin: Tianjin University, 2018. https://doi.org/10.27356/d.cnki.gtjdu.2018.000097.

    [17]

    崔涛, 尹禄, 孙亚楠, 等. 基于全像面拟合的中阶梯光栅光谱仪谱图还原算法[J]. 中国激光, 2024, 51(8): 0811003. doi: 10.3788/CJL231469

    Cui T, Yin L, Sun Y N, et al. Spectral reduction algorithm for echelle spectrometer based on full-field fitting[J]. Chin J Lasers, 2024, 51(8): 0811003. doi: 10.3788/CJL231469

    [18]

    郑麒麟, 文龙, 陈沁. 基于散斑检测的微型计算光谱仪研究进展[J]. 光电工程, 2021, 48(3): 200183. doi: 10.12086/oee.2021.200183

    Zheng Q L, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electron Eng, 2021, 48(3): 200183. doi: 10.12086/oee.2021.200183

    [19]

    Zheng Z H, Zhu S K, Chen Y, et al. Towards integrated mode-division demultiplexing spectrometer by deep learning[J]. Opto-Electron Sci, 2022, 1(11): 220012. doi: 10.29026/oes.2022.220012

    [20]

    王玉, 曾延安, 郑海霆, 等. 基于成像光谱仪的光亮度精确测量方法研究[J]. 激光技术, 2024, 48(2): 166−170. doi: 10.7510/jgjs.issn.1001-3806.2024.02.004

    Wang Y, Zeng Y A, Zheng H T, et al. Study on luminance accurate measurement method based on imaging spectrometer[J]. Laser Technol, 2024, 48(2): 166−170. doi: 10.7510/jgjs.issn.1001-3806.2024.02.004

  • 加载中

(13)

(7)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-06-07
修回日期:  2024-08-01
录用日期:  2024-08-02
刊出日期:  2024-08-20

目录

/

返回文章
返回