太阳耀光偏振参数星上计算系统设计

李宇豪,纪峰,裘桢炜,等. 太阳耀光偏振参数星上计算系统设计[J]. 光电工程,2024,51(4): 240002. doi: 10.12086/oee.2024.240002
引用本文: 李宇豪,纪峰,裘桢炜,等. 太阳耀光偏振参数星上计算系统设计[J]. 光电工程,2024,51(4): 240002. doi: 10.12086/oee.2024.240002
Li Y H, Ji F, Qiu Z W, et al. Design and implement of a space-borne sun glint polarization parameter computing system[J]. Opto-Electron Eng, 2024, 51(4): 240002. doi: 10.12086/oee.2024.240002
Citation: Li Y H, Ji F, Qiu Z W, et al. Design and implement of a space-borne sun glint polarization parameter computing system[J]. Opto-Electron Eng, 2024, 51(4): 240002. doi: 10.12086/oee.2024.240002

太阳耀光偏振参数星上计算系统设计

  • 基金项目:
    装备预研项目基金资助项目(305090306); 江淮前沿技术协同创新中心追梦基金课题资助项目(2023-ZM01K011)
详细信息
    作者简介:
    通讯作者: 陈斐楠,feinan123@aiofm.ac.cn
  • 中图分类号: O436

Design and implement of a space-borne sun glint polarization parameter computing system

  • Fund Project: Project supported by Equipment Pre-research Project (305090306), and Dreams Foundation of Jianghuai Advance Technology Center Fund (2023-ZM01K011)
More Information
  • 太阳耀光影响光学遥感成像质量,可采用在探测器前加装偏振片的方式进行抑制,抑制效果取决于太阳和遥感器的相对位置以及偏振片的偏振方向。为实时准确地获取太阳耀光偏振信息,本文在星载大气校正仪上设计了一套星上太阳耀光偏振参数计算系统,利用大气校正仪670 nm波段的0°,60°,120°三个通道偏振图像实时计算耀光参数,并使用基于6S大气辐射传输模型的耀光参数建立晴空海洋偏振双向反射分布函数查找表,排除受云干扰的图像像元,最后利用实时探测数据进行高精度太阳耀光偏振方位角计算。系统以V5系列的现场可编程门阵列为计算平台,使用高层次综合工具进行算法的硬件实现,并在实验室内进行了实验验证。实验结果表明,系统计算偏振角误差与真实值相比在0.5°以内,在100 MHz主频时钟下一组25×25像元的数据计算时间消耗为19.47281 ms,FPGA资源使用率为41%。

  • Overview: In passive optical remote sensing, the phenomenon of sun glint presents a substantial challenge in the acquisition and processing of high-quality images. Sun glint is the specular reflection from surfaces like water. Water bodies are characterized by low reflectivity, which classifies them as dark targets within the context of remote sensing. The radiation of sun glint is usually dozens of times higher than the target's radiation, and is easy to cause sensor saturation, leading to serious interference with the detection target. The current methods for suppressing solar glint in remote sensing imagery are mainly conducted on the ground. However, these approaches are often reactive rather than preventive and may not be suitable for real-time applications. According to Fresnel's law, the vertical component of sun glint is usually greater than the parallel component. In space, to mitigate this issue, a polarizer is typically incorporated in front of the remote sensor, leveraging the linear polarization characteristics of sun glint. The suppression effects depend on the relative position of the sun and the remote sensor, as well as the directions of polarizers. With the rapid development of satellite technology, the traditional method of installing parallel linear polarizers is difficult to meet our requirements. So, to suppress sun glint accurately and timely, we introduce a novel onboard system for the real-time computation of Sun glint polarization parameters, devised specifically for a spaceborne atmospheric correction instrument. Utilizing three channel polarization images (at 0°, 60°, and 120°) in the 670 nm band of the space-borne atmospheric correction, we calculate the sun glint parameters and compare them against the 6S radiation transfer model, excluding image pixels heavily influenced by the cloud. The system is implemented using the V5 series Field Programmable Gate Array (FPGA) as the hardware platform, and the High-Level Synthesis Tool (HLS) as the software platform. By utilizing the Cordic algorithm, converting data to appropriate datatypes, and implementing pipeline unrolling methods, we achieve a balanced trade-off between speed and resource allocation. A simple experiment was built to verify the system in the laboratory. The experiments performed that the calculation deviation is within 0.5°, calculating the 25 pixels×25 pixels data costs 19.47281 ms in 100 MHz clock, and the highest resource utilization rate accounts for 41%, meeting the requirements of the accuracy, real-time performance, and resource consumption.

  • 加载中
  • 图 1  太阳耀光几何

    Figure 1.  Sun glint geometry

    图 2  在不同太阳天顶角下,太阳耀光偏振度和偏振角与观测天顶角的关系

    Figure 2.  The relationship between the degree of polarization and angle of polarization and observed zenith angle at different solar zenith angles

    图 3  平行偏振片和特定角度偏振片抑制效果对比

    Figure 3.  Comparison of suppression effects between parallel polarizers and specific angle polarizers

    图 4  计算系统内外信息流图

    Figure 4.  System information flow diagram

    图 5  状态机图

    Figure 5.  Finite-state machine

    图 6  线偏光源和大气校正仪探头整机

    Figure 6.  Line biased light source and atmosphere calibration instrument probe

    表 1  查找表规则

    Table 1.  Ruler of the lookup table

    StartEndStepAverage
    Solar zenith80°
    View zenith80°
    Differentials azimuth360°10°
    Wind speed4.1 m/s
    Wind azimuth90°
    下载: 导出CSV

    表 2  两种数据类型运算资源消耗对比

    Table 2.  Performance comparison of two datatype

    LatencyDSP48EFFLUT
    FLOAT668401182
    AP_FIXED<32,16>03076
    下载: 导出CSV

    表 3  CORDIC算法迭代因子

    Table 3.  CORDIC algorithm iteration factor

    itanθθIteration factor
    01450.70711
    10.526.565050.63246
    20.2514.036240.61357
    30.1257.125020.60883
    40.06253.576330.60765
    50.031251.789910.607352
    60.0156250.895170.607278
    ············
    下载: 导出CSV

    表 4  三种算法性能与资源消耗比较

    Table 4.  Performance and resource comparison of three algorithms

    LatencyIntervalDSP48EFFLUT
    CORDIC4104423640
    sin393932261119
    Taylor3636629424678
    下载: 导出CSV

    表 5  优化前后性能与资源消耗比较

    Table 5.  Performance and resource comparison before and after optimization

    Latency FF DSP48E
    BeforeAfterBeforeAfterBeforeAfter
    GHT181109 33174883 124
    CDOLP104691852343000
    MDOLP1397368819187291420
    下载: 导出CSV

    表 6  0°实验测试结果

    Table 6.  0° experiment results

    ParameterValue
    Mean DN13717
    Mean DN25562
    Mean DN3740
    DOLP0.967
    Standard deviation of DOLP0.023
    AOP4.377°
    Standard deviation of AOP0.112
    下载: 导出CSV

    表 7  实验测试结果

    Table 7.  Experiment results

    Angle of lightMEAN DN1MEAN DN2MEAN DN3DOLPStandard deviation of DOLPAOPStandard deviation of AOP
    30°1127593730020.9710.00330.100.098
    60°728368756120.9760.00260.450.126
    90°2963110259820.9740.00390.350.100
    120°556973437080.9700.002119.940.120
    150°5972297111040.9750.003150.200.107
    180°372755597350.9730.002180.300.110
    下载: 导出CSV
  • [1]

    Kay S, Hedley J D, Lavender S. Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths[J]. Remote Sens, 2009, 1(4): 697−730. doi: 10.3390/rs1040697

    [2]

    Wang M H, Bailey S W. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products[J]. Appl Opt, 2001, 40(27): 4790−4798. doi: 10.1364/AO.40.004790

    [3]

    Mobley C D. Polarized reflectance and transmittance properties of windblown sea surfaces[J]. Appl Opt, 2015, 54(15): 4828−4849. doi: 10.1364/AO.54.004828

    [4]

    Hieronymi M. Polarized reflectance and transmittance distribution functions of the ocean surface[J]. Opt Express, 2016, 24(14): A1045−A1068. doi: 10.1364/OE.24.0A1045

    [5]

    Fougnie B, Frouin R, Lecomte P, et al. Reduction of skylight reflection effects in the above-water measurement of diffuse marine reflectance[J]. Appl Opt, 1999, 38(18): 3844−3856. doi: 10.1364/AO.38.003844

    [6]

    刘志刚, 周冠华. 太阳耀光的偏振分析[J]. 红外与毫米波学报, 2007, 26(5): 362−365. doi: 10.3321/j.issn:1001-9014.2007.05.011

    Liu Z G, Zhou G H. Polarization of sun glint[J]. J Infrared Millimeter Waves, 2007, 26(5): 362−365. doi: 10.3321/j.issn:1001-9014.2007.05.011

    [7]

    Zhao H J, Ji Z, Zhang Y, et al. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint[J]. Opt Express, 2016, 24(15): 16396−16409. doi: 10.1364/OE.24.016396

    [8]

    Avrahamy R, Milgrom B, Zohar M, et al. Improving object imaging with sea glinted background using polarization method: analysis and operator survey[J]. IEEE Trans Geosci Remote Sens, 2019, 57(11): 8764−8774. doi: 10.1109/TGRS.2019.2922827

    [9]

    张卫国. 海面太阳耀光背景下的偏振探测技术[J]. 中国光学, 2018, 11(2): 231−236. doi: 10.3788/co.20181102.0231

    Zhang W G. Application of polarization detection technology under the background of sun flare on sea surface[J]. Chin Opt, 2018, 11(2): 231−236. doi: 10.3788/co.20181102.0231

    [10]

    朱鹤骞, 曲宏松. 海面背景耀光的自适应抑制系统[J]. 光学学报, 2022, 42(12): 1201006. doi: 10.3788/AOS202242.1201006

    Zhu H Q, Qu H S. Adaptive suppression system of sea background flare[J]. Acta Opt Sin, 2022, 42(12): 1201006. doi: 10.3788/AOS202242.1201006

    [11]

    Wang M S, Qiu S, Jin W Q, et al. Automatic suppression method for water surface glints using a division of focal plane visible polarimeter[J]. Sensors, 2023, 23(17): 7446. doi: 10.3390/s23177446

    [12]

    于新宇. 星载偏振光谱相机sCMOS成像系统设计[D]. 桂林: 桂林电子科技大学, 2023: 1–67.

    Yu X Y. Design of sCMOS imaging system for space-borne polarization spectral camera[D]. Guilin: Guilin University of Electronic Technology, 2023: 1–67.

    [13]

    Born M, Wolf E. Principles of Optics[M]. 5th ed. New York: Pergamon Press, 1975.

    [14]

    Reda I, Andreas A. Corrigendum to “Solar position algorithm for solar radiation applications” [Solar Energy 76 (2004) 577–589][J]. Sol Energy, 2007, 81(6): 838. doi: 10.1016/j.solener.2007.01.003

    [15]

    Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter[J]. J Opt Soc Am, 1954, 44(11): 838−850. doi: 10.1364/JOSA.44.000838

    [16]

    Kotchenova S Y, Vermote E F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces[J]. Appl Opt, 2007, 46(20): 4455−4464. doi: 10.1364/AO.46.004455

    [17]

    陈震霆, 孙晓兵, 汪俊锋, 等. 近红外偏振辐射卫星数据的海洋耀光动态检测[J]. 遥感学报, 2019, 23(2): 215−229. doi: 10.11834/jrs.20197072

    Chen Z T, Sun X B, Wang J F, et al. Dynamic detection of ocean glint from near-infrared polarized radiation satellite data[J]. J Remote Sens, 2019, 23(2): 215−229. doi: 10.11834/jrs.20197072

    [18]

    Remer L A, Kaufman Y J, Tanré D, et al. The MODIS aerosol algorithm, products, and validation[J]. J Atmos Sci, 2005, 62(4): 947−973. doi: 10.1175/JAS3385.1

    [19]

    Toubbe B, Bailleul T, Deuze J L, et al. In-flight calibration of the POLDER polarized channels using the Sun's glitter[J]. IEEE Trans Geosci Remote Sens, 1999, 37(1): 513−524. doi: 10.1109/36.739104

    [20]

    Bicheron P, Leroy M, Hautecoeur O, et al. Enhanced discrimination of boreal forest covers with directional reflectances from the airborne polarization and directionality of Earth reflectances (POLDER) instrument[J]. J Geophys Res Atmos, 1997, 102(D24): 29517−29528. doi: 10.1029/97JD01330

    [21]

    钱鸿鹄. 多角度偏振成像仪实验室全视场偏振定标[D]. 合肥: 中国科学技术大学, 2017: 1–100.

    Qian H H. Laboratory full field of view polarization calibration of directional polarimetric camera[D]. Hefei: University of Science and Technology of China, 2017: 1–100.

    [22]

    侯梦雨, 李正强, 谢一凇, 等. 国产卫星多角度偏振传感器的光谱特征云检测方法研究[J]. 大气与环境光学学报, 2022, 17(6): 598−612. doi: 10.3969/j.issn.1673-6141.2022.06.002

    Hou M Y, Li Z Q, Xie Y S, et al. Research on spectral feature cloud detection method of directional polarimetric camera on Chinese satellite[J]. J Atmos Environ Opt, 2022, 17(6): 598−612. doi: 10.3969/j.issn.1673-6141.2022.06.002

    [23]

    程前, 高欣健, 高隽, 等. 基于邻域约束的大气偏振模式生成网络[J]. 光电工程, 2022, 49(6): 210423. doi: 10.12086/oee.2022.210423

    Cheng Q, Gao X J, Gao J, et al. A generative method for atmospheric polarization modelling based on neighborhood constraint[J]. Opto-Electron Eng, 2022, 49(6): 210423. doi: 10.12086/oee.2022.210423

    [24]

    Kastner R, Matai J, Neuendorffer S. Parallel programming for FPGAs[Z]. arXiv: 1805.03648, 2018. https://doi.org/10.48550/arXiv.1805.03648.

    [25]

    Volder J E. The CORDIC trigonometric computing technique[J]. IRE Trans Electron Comput, 1959, EC-8(3): 330−334. doi: 10.1109/TEC.1959.5222693

  • 加载中

(7)

(7)

计量
  • 文章访问数:  328
  • PDF下载数:  132
  • 施引文献:  0
出版历程
收稿日期:  2024-01-23
修回日期:  2024-02-23
录用日期:  2024-02-26
刊出日期:  2024-04-25

目录

/

返回文章
返回