空间引力波探测望远镜研究进展

王小勇,白绍竣,张倩,等. 空间引力波探测望远镜研究进展[J]. 光电工程,2023,50(11): 230219. doi: 10.12086/oee.2023.230219
引用本文: 王小勇,白绍竣,张倩,等. 空间引力波探测望远镜研究进展[J]. 光电工程,2023,50(11): 230219. doi: 10.12086/oee.2023.230219
Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219
Citation: Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

空间引力波探测望远镜研究进展

  • 基金项目:
    国家重点研发计划项目(2021YFC2202000)
详细信息
    作者简介:
    *通讯作者: 白绍竣,baisj2008@126.com
  • 中图分类号: TH743

Research progress of telescopes for space-based gravitational wave missions

  • Fund Project: Project supported by National Key Research and Development Program of China (2021YFC2202000)
More Information
  • 望远镜是空间引力波探测系统的核心组件之一,主要功能是本地激光的准直发射和远端激光的接收与压缩。望远镜作为干涉光路的一部分,直接影响测量噪声。相对于成像系统,空间引力波探测望远镜除了波前质量要求高之外,对杂散光和光程稳定性也具有极高的要求,而且后两项的挑战性更大。本文围绕望远镜核心指标的实现,对光学系统、光机结构、空间热环境与热控、杂散光仿真与抑制、稳定性测量等方面的研究进展进行了综述,可以为我国的空间引力波探测望远镜研制提供参考。

  • Overview: The optical telescopes for space-based gravitational wave missions play an important role in the measurement, which both expand the beam going to the far spacecraft and efficiently collect the beam sent from the far spacecraft. The telescope, as part of the interferometric path, directly affects the measurement noise. Compared with the imaging system, the telescope for space gravitational wave observatory not only has high requirements on wavefront quality, but also has extremely high requirements on stray light performance and optical path stability. In addition, the coupling of the wavefront aberration resulting from the telescope and pointing error can produce tilt-to-length (TTL) noise. One of the design goals is to minimize the TTL coupling in the transceivers. In terms of the optical system, the design baseline is an off-axis four-mirror optical system, which can meet the wavefront quality and stray light specification requirements. The optimization of the optical system is to further reduce the TTL noise and improve compatibility with the optical bench. The opto-mechanical structure of the telescope is the physical carrier to realize the optical, mechanical, and thermal design functions. The current design baseline tends to use Zerodur or ULE materials for all optical components and structures, which can ensure the optical path stability of the telescope. However, there are currently few studies on the vibration tolerance of telescopes during the launch stage. In terms of stray light, through optimization of the optical system and strict control of the surface quality of optical components, backscattered stray light can be reduced to 10−10 of the transmission power. Stray light caused by contamination of the optical surface is more serious than stray light caused by the roughness of the optical surface. Stringent anti-pollution measures need to be taken during development and storage. In terms of the thermal design, the main external heat flow disturbance in the 0.1 mHz - 1 Hz frequency band comes from the fluctuation of the solar constant. The thermal control of the telescope is closely related to the configuration of the spacecraft and the distribution of heat sources. Thermal design and optimization of telescopes need to be carried out integrated with the spacecraft. The research progress of the telescope's optical system, optomechanical structure, space environment and thermal design, stray light simulation and suppression, and stability measurement are reviewed, which can provide a reference for the development of space gravitational telescopes in our country.

  • 加载中
  • 图 1  望远镜整体转向方案与视场内指向方案对比[19]

    Figure 1.  Telescope pointing compensation solutions[19]

    图 2  离轴四反光学系统布局[11]

    Figure 2.  Layout for the off-axis reference design[11]

    图 3  NASA与佛罗里达大学联合研制的望远镜原理样机[24]

    Figure 3.  Physical prototype of the telescope developed by NASA and University of Florida[24]

    图 4  以卡塞格林系统为基础的离轴四反光学系统布局[25]

    Figure 4.  Cassegrain design form optical system layout[25]

    图 5  以柯尔施系统为基础的离轴六反光学系统布局[25]

    Figure 5.  Korsch design form optical system layout[25]

    图 6  反射和透射混合的光学系统[28]

    Figure 6.  Mixed reflective and refractive optical systems[28]

    图 7  视场内指向光学系统[19]

    Figure 7.  Optical systems for the in-field pointing telescope[19]

    图 8  视场内指向光学系统[32]

    Figure 8.  Optical design of the specialized wide-field, off-axis telescope for in-field pointing[32]

    图 9  离轴四反光学系统布局[38]

    Figure 9.  Telescope assembly structure at Airbus[38]

    图 10  碳纤维复合材料结构样件[39]

    Figure 10.  CFRP structure prototype[39]

    图 11  SiC结构稳定性样件[40]

    Figure 11.  SiC telescope spacer[40]

    图 12  同轴望远镜构型[37]

    Figure 12.  Configuration of the coaxial telescope[37]

    图 13  离轴望远镜构型[28]

    Figure 13.  Configuration of the off-axis telescope[28]

    图 14  离轴视场内指向望远镜构型[43]

    Figure 14.  Configuration of telescopes with in-field pointing[43]

    图 15  离轴视场内指向望远镜望构型(望远镜交叉布置)[43]

    Figure 15.  Configuration of telescopes with in-field pointing(crossing the two lines of sight of the two telescopes)[43]

    图 16  LISA航天器的热控设计思路[45]

    Figure 16.  Thermal design concept of the LISA science module[45]

    图 17  望远镜光程稳定性测试系统原理图[53]

    Figure 17.  Schematic of the optical setup[53]

    图 18  望远镜测试结构[53]

    Figure 18.  Telescope test structure[53]

    图 19  在望远镜结构上的布局示意图[54]

    Figure 19.  Layout of truss cavities on the telescope[54]

    图 20  稳定性监测示意图[28]

    Figure 20.  Concept of the active optical truss[28]

    表 1  LISA望远镜的指标参数[7, 11-12]

    Table 1.  Key requirements for a space-based gravitational wave telescope[7, 11-12]

    序号指标名称指标指标来源
    1.波长1064 nm激光器
    2.远场波前RMS 1/30λ指向精度
    3.捕获视场±200 μrad捕获时间
    4.科学视场±8 μrad杂散光
    5.杂散光10−10位移噪声
    6.口径Φ300 mm收发链路功率
    7.光程稳定性$1 \; {\rm{pm}}/\sqrt {{\rm{Hz}}} \times \sqrt {\left( {1 + { {\left( {\dfrac{ {0.003} }{f} } \right)}^4} } \right)}$ 频段:1 mHz~0.1 Hz系统光程噪声分配/指向
    8.光学传输效率>0.85散粒噪声
    下载: 导出CSV
  • [1]

    Livas J C. Possible space-based gravitational-wave observatory mission concept[R]. Honolulu: International Astronomical Union, 2015.

    [2]

    Hammesfahr A. LISA mission study overview[J]. Class Quantum Grav, 2001, 18(19): 4045−4051. doi: 10.1088/0264-9381/18/19/311

    [3]

    Jennrich O. LISA technology and instrumentation[J]. Class Quantum Grav, 2009, 26(15): 153001. doi: 10.1088/0264-9381/26/15/153001

    [4]

    Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    [5]

    Luo Z R, Guo Z K, Jin G, et al. A brief analysis to Taiji: science and technology[J]. Results Phys, 2020, 16: 102918. doi: 10.1016/j.rinp.2019.102918

    [6]

    Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: a concise overview[J]. Prog Theor Exp Phys, 2021, 2021(5): 05A108. doi: 10.1093/ptep/ptaa083

    [7]

    Livas J C, Sankar S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proc SPIE, 2016, 9904: 99041K. doi: 10.1117/12.2233249

    [8]

    Robertson D I, McNamara P, Ward H, et al. Optics for LISA[J]. Class Quantum Grav, 1997, 14(6): 1575−1577. doi: 10.1088/0264-9381/14/6/029

    [9]

    Xiao Q, Duan H Z, Ming M, et al. The analysis of the far-field phase and the tilt-to-length error contribution in space-based laser interferometry[J]. Class Quantum Grav, 2023, 40(6): 065009. doi: 10.1088/1361-6382/acbadc

    [10]

    Livas J C, Arsenovic P, Crow J A, et al. Telescopes for space-based gravitational wave missions[J]. Opt Eng, 2013, 52(9): 091811. doi: 10.1117/1.OE.52.9.091811

    [11]

    Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proc SPIE, 2014, 9143: 914314. doi: 10.1117/12.2056824

    [12]

    Livas J, Sankar S. Optical telescope design study results[J]. J Phys Conf Ser, 2015, 610: 012029. doi: 10.1088/1742-6596/610/1/012029

    [13]

    范纹彤, 赵宏超, 范磊, 等. 空间引力波探测望远镜系统技术初步分析[J]. 中山大学学报(自然科学版), 2021, 60(1): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    Fan W T, Zhao H C, Fan L, et al. Preliminary analysis of space gravitational wave detection telescope system technology[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    [14]

    Fan Z C, Zhao L J, Cao S Y, et al. High performance telescope system design for the TianQin project[J]. Class Quantum Grav, 2022, 39(19): 195017. doi: 10.1088/1361-6382/ac8b57

    [15]

    Fan Z C, Ji H R, Mo Y, et al. Pupil aberrations correction of the afocal telescope for the TianQin project[J]. Class Quantum Grav, 2023, 40(19): 195017. doi: 10.1088/1361-6382/aceb2a

    [16]

    王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 131−151. doi: 10.3788/CO.20181101.0131

    Wang Z, Sha W, Chen Z, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chin Opt, 2018, 11(1): 131−151. doi: 10.3788/CO.20181101.0131

    [17]

    Yu M, Li J C, Lin H A, et al. Optical system design of large-aperture space gravitational wave telescope[J]. Opt Eng, 2023, 62(6): 065107. doi: 10.1117/1.OE.62.6.065107

    [18]

    Isleif K S, Gerberding O, Penkert D, et al. Suppressing ghost beams: backlink options for LISA[J]. J Phys Conf Ser, 2017, 840: 012016. doi: 10.1088/1742-6596/840/1/012016

    [19]

    Livas J, Sankar S, West G, et al. eLISA telescope in-field pointing and scattered light study[J]. J Phys Conf Ser, 2017, 840: 012015. doi: 10.1088/1742-6596/840/1/012015

    [20]

    Spector A D. Investigation of the telescope back-reflection for space-based interferometric gravitational wave detectors[D]. Gainesville: University of Florida, 2015.

    [21]

    Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040

    [22]

    田思恒, 黄永梅, 徐杨杰, 等. 利用离焦光斑的离轴望远镜失调校正方法研究[J]. 光电工程, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

    Tian S H, Huang Y M, Xu Y J, et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

    [23]

    Schuldt T, Gohlke M, Weise D, et al. Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor[J]. Class Quantum Grav, 2009, 26(8): 085008. doi: 10.1088/0264-9381/26/8/085008

    [24]

    Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Grav, 2020, 37(6): 065005. doi: 10.1088/1361-6382/ab6adf

    [25]

    Escudero Sanz I, Heske A, Livas J C. A telescope for LISA–the laser interferometer space antenna[J]. Adv Opt Technol, 2018, 7(6): 395−400. doi: 10.1515/aot-2018-0044

    [26]

    Lehan J P, Howard J M, Li H, et al. Pupil aberrations in the LISA transceiver design[J]. Proc SPIE, 2020, 11479: 114790D. doi: 10.1117/12.2566373

    [27]

    Papa J C, Howard J M, Rolland J P. Survey of the four-mirror freeform imager solution space[J]. Opt Express, 2021, 29(25): 41534−41551. doi: 10.1364/OE.442943

    [28]

    Weise D, Marenaci P, Weimer P, et al. Opto-mechanical architecture of the LISA instrument[J]. Proc SPIE, 2017, 10566: 1056611. doi: 10.1117/12.2308192

    [29]

    Chen S N, Jiang H L, Wang C Y, et al. Optical system design of inter-spacecraft laser interferometry telescope[J]. Opt Photonics J, 2019, 9(8B): 26−37. doi: 10.4236/opj.2019.98B004

    [30]

    余苗, 李建聪, 林宏安, 等. 低灵敏度空间引力波望远镜光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1384−1393. doi: 10.37188/CO.2023-0006

    Yu M, Li J C, Lin H A, et al. Design of optical system for low-sensitivity space gravitational wave telescope[J]. Chin Opt, 2023, 16(6): 1384−1393. doi: 10.37188/CO.2023-0006

    [31]

    Li J C, Lin H A, Huang Y Z, et al. Evaluation method for the design results of space gravitational-wave telescopes[J]. Meas Sci Technol, 2023, 34(5): 055409. doi: 10.1088/1361-6501/acb167

    [32]

    Weise D R, Marenaci P, Weimer P, et al. Alternative opto-mechanical architectures for the LISA instrument[J]. J Phys Conf Ser, 2009, 154: 012029. doi: 10.1088/1742-6596/154/1/012029

    [33]

    冷荣宽, 王上, 王智, 等. 空间引力波探测前向杂散光测量和抑制[J]. 中国光学(中英文), 2023, 16(5): 1081−1088. doi: 10.37188/CO.2022-0251

    Leng R K, Wang S, Wang Z, et al. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chin Opt, 2023, 16(5): 1081−1088. doi: 10.37188/CO.2022-0251

    [34]

    Spector A, Mueller G. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors[J]. Class Quantum Grav, 2012, 29(20): 205005. doi: 10.1088/0264-9381/29/20/205005

    [35]

    Sankar S R, Livas J C. Initial progress with numerical modelling of scattered light in a candidate eLISA telescope[J]. J Phys Conf Ser, 2015, 610: 012031. doi: 10.1088/1742-6596/610/1/012031

    [36]

    Khodnevych V, Lintz M, Dinu-Jaeger N, et al. Stray light estimates due to micrometeoroid damage in space optics, application to the LISA telescope[J]. J Astron Telesc Instrum Syst, 2020, 6(4): 048005. doi: 10.1117/1.JATIS.6.4.048005

    [37]

    Weise D, Braxmaier C, Gath P, et al. Optical metrology subsystem of the LISA gravitational wave detector[J]. Proc SPIE, 2017, 10567: 105670Q. doi: 10.1117/12.2308037

    [38]

    Verlaan A L, Hogenhuis H, Pijnenburg J, et al. LISA telescope assembly optical stability characterization for ESA[J]. Proc SPIE, 2017, 10564: 105640K. doi: 10.1117/12.2309058

    [39]

    Sanjuán J, Preston A, Korytov D, et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope[J]. Rev Sci Instrum, 2011, 82(12): 124501. doi: 10.1063/1.3662470

    [40]

    Sanjuán J, Korytov D, Mueller G, et al. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors[J]. Rev Sci Instrum, 2012, 83(11): 116107. doi: 10.1063/1.4767247

    [41]

    Krieg J, Carré A, Döhring T, et al. The past decade of ZERODUR® glass-ceramics in space applications[J]. Proc SPIE, 2022, 12180: 121805N. doi: 10.1117/12.2628956

    [42]

    Brooks T E, Eng R, Stahl H P. Optothermal stability of large ULE and Zerodur mirrors[J]. Proc SPIE, 2018, 10743: 107430A. doi: 10.1117/12.2321275

    [43]

    Gath P F, Weise D, Schulte H R, et al. LISA mission and system architectures and performances[J]. J Phys Conf Ser, 2009, 154: 012013. doi: 10.1088/1742-6596/154/1/012013

    [44]

    Barraclough S, Robson A, Smith K, et al. LISA PathFinder thermal design and micro-disturbance considerations[R]. SAE International, 2006. https://doi.org/10.4271/2006-01-2276.

    [45]

    Morgenroth L, Honnen K, Heys S, et al. Thermal study of laser interferometer space antenna (LISA)[R]. SAE International, 2001. https://doi.org/10.4271/2001-01-2259.

    [46]

    Peabody H, Merkowitz S. LISA thermal design[J]. Class Quantum Grav, 2005, 22(10): S403−S411. doi: 10.1088/0264-9381/22/10/036

    [47]

    Peabody H, Merkowitz S M. Low frequency thermal performance of the LISA sciencecraft[J]. AIP Conf Proc, 2006, 873(1): 204−209. doi: 10.1063/1.2405044

    [48]

    Fishwick N, Barraclough S, Warren C. High accuracy thermal modelling applied to LISA pathfinder thermal noise analysis[C]//40th International Conference on Environmental Systems, 2010: 6142. https://doi.org/10.2514/6.2010-6142.

    [49]

    夏冰, 陈厚源, 汪一萍, 等. 空间引力波探测卫星外热流环境及其热控设计[J]. 中山大学学报(自然科学版), 2021, 60(1): 138−145. doi: 10.13471/j.cnki.acta.snus.2020.11.11.2020B131

    Xia B, Chen H Y, Wang Y P, et al. External heat flux and thermal control design of space gravitational wave detection satellite[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1): 138−145. doi: 10.13471/j.cnki.acta.snus.2020.11.11.2020B131

    [50]

    Chen H Y, Ling C, Yao Z Y, et al. Thermal environment analysis for TianQin: II. Solar irradiance disparity across constellation[J]. Class Quantum Grav, 2022, 39(16): 165009. doi: 10.1088/1361-6382/ac8093

    [51]

    Chen H Y, Ding Y W, Pan J J, et al. Thermal environment analysis for TianQin: III. Low-frequency thermal transfer inside the flat-top sun shield[J]. Class Quantum Grav, 2023, 40(8): 085001. doi: 10.1088/1361-6382/acc22e

    [52]

    Chen H Y, Ling C, Zhang X F, et al. Thermal environment analysis for TianQin[J]. Class Quantum Grav, 2021, 38(15): 155015. doi: 10.1088/1361-6382/ac0a85

    [53]

    Umińska A A, Kulkarni S, Sanjuan J, et al. Ground testing of the LISA telescope[J]. Proc SPIE, 2021, 11820: 118200I. doi: 10.1117/12.2594605

    [54]

    Jersey K, Zhang Y Q, Harley-Trochimczyk I, et al. Design, fabrication, and testing of an optical truss interferometer for the LISA telescope[J]. Proc SPIE, 2021, 11820: 118200L. doi: 10.1117/12.2594738

  • 加载中

(21)

(1)

计量
  • 文章访问数:  2957
  • PDF下载数:  818
  • 施引文献:  0
出版历程
收稿日期:  2023-09-01
修回日期:  2023-11-21
录用日期:  2023-11-24
刊出日期:  2023-12-29

目录

/

返回文章
返回