Far-field computational optical imaging techniques based on synthetic aperture: a review
-
摘要:
传统光学成像实质上是目标场景的光强信号在空间维度上的直接均匀采样记录与再现的过程。因此,其成像分辨率与信息量不可避免地受到光学衍射极限、成像系统空间带宽积等若干物理条件制约。如何突破这些物理制约,获得更高分辨率、更宽广的图像信息,一直是该领域的永恒课题。计算光学成像通过前端光学调控与后端信号处理相结合,为突破成像系统的衍射极限限制,实现超分辨成像提供了新思路。本文综述了基于计算光学合成孔径成像实现成像分辨率的提升以及空间带宽积拓展的相关研究工作,主要包括基于相干主动合成孔径成像与非相干被动合成孔径成像的基础理论及关键技术。本文进一步揭示了当前“非相干、无源被动、超衍射极限”成像的迫切需求及其现阶段存在的瓶颈问题,并展望了今后的研究方向以及解决这些问题可能的技术途径。
Abstract:Conventional optical imaging is essentially a process of recording and reproducing the intensity signal of a scene in the spatial dimension with direct uniform sampling. Therefore, the resolution and information content of imaging are inevitably constrained by several physical limitations, such as optical diffraction limit and spatial bandwidth product of the imaging system. How to break these physical limitations and obtain higher resolution and broader image field of view has been an eternal topic in this field. Computational optical imaging, by combining front-end optical modulation with back-end signal processing, offers a new approach to surpassing the diffraction limit of imaging systems and realizing super-resolution imaging. In this paper, we introduce the relevant research efforts on improving imaging resolution and expanding the spatial bandwidth product through computational optical synthetic aperture imaging, including the basic theory and technologies based on coherent active synthetic aperture imaging and incoherent passive synthetic aperture imaging. Furthermore, this paper reveals the pressing demand for "incoherent, passive, and beyond-diffraction-limit" imaging, identifies the bottlenecks, and provides an outlook on future research directions and potential technical approaches to address these challenges.
-
Overview: More than 80% of human perception of external information comes from vision, and acquiring more information about the objective world is the eternal goal of human pursuit. Conventional optical imaging is essentially a process of recording and reproducing the intensity signal of a scene in the spatial dimension with direct uniform sampling. Therefore, the resolution and information content of imaging are inevitably constrained by several physical limitations such as optical diffraction limit, and spatial bandwidth product of the imaging system. How to break these physical limitations and obtain higher resolution and broader image field of view has been an eternal topic in this field. Computational optical imaging, by combining front-end optical modulation with back-end signal processing, offers a new approach to surpassing the diffraction limit of imaging systems and realizing super-resolution imaging. Although synthetic aperture techniques first exploited the idea of computational optical imaging to achieve resolution enhancement, they have never been encapsulated as a system in computational optical imaging. In this paper, we introduce the relevant research efforts on improving imaging resolution and expanding the spatial bandwidth product through computational optical synthetic aperture imaging, including the basic theory and technologies based on coherent active synthetic aperture imaging and incoherent passive synthetic aperture imaging. Furthermore, this paper reveals the pressing demand for "incoherent, passive, and beyond-diffraction-limit" imaging, identifies the bottlenecks, and provides an outlook on future research directions and potential technical approaches to address these challenges. The rapidly advancing computational imaging technology has provided new ideas, methods, and theories for far-field synthetic aperture detection. It significantly enhances the imaging efficiency of traditional synthetic aperture techniques and reduces excessive reliance on "interferometric phase acquisition" in synthetic aperture technology. It breaks through the functional/performance boundaries that traditional synthetic aperture technology can achieve and provides possibilities for extensive expansion and extension in the field of far-field synthetic aperture. Within the current computational imaging system, there are still a series of new concepts and new imaging techniques that are being perfected. It can be anticipated that as a branch of computational imaging, far-field optical synthetic aperture detection technology will undoubtedly experience rapid development and bring forth more possibilities in remote sensing, military reconnaissance, and near-Earth satellite detection, among other fields.
-
图 8 相机阵列傅里叶叠层成像方案示意图[37]。(a)尺寸为12.5 mm的单个孔径成像方案;(b)利用相机阵列实现125 mm合成孔径成像结果的方案;(c)使用孔径扫描模拟图(b)中的成像方案以获取成效的高分辨率成像结果
Figure 8. Schematic diagram of the camera array Fourier ptychography imaging[37]. (a) The single aperture imaging scheme with a size of 12.5 mm; (b) The scheme to achieve 125 mm synthetic aperture imaging results using the camera array; (c) The imaging scheme in (b) using the aperture scanning to obtain effective high-resolution imaging results
图 10 USAF分辨率板实验结果[39]。(a) 分别为子孔径直接成像结果、短曝光平均结果,旋转漫射体成像结果以及合成孔径、合成孔径去噪结果;(b) 五种方法的成像结果区域放大;(c) 可分辨线对与对比度曲线图;(d) 合成孔径尺寸与散斑尺寸曲线图
Figure 10. FP for improving spatial resolution in diffuse objects[39]. (a) Resolution of a USAF target under coherent light under various imaging modalities; (b) Magnified regions of various bar groups recovered by the five techniques; (c) Contrast of the bars as a function of feature size; (d) Speckle size and resolution loss are inversely proportional to the size of the imaging aperture
图 11 傅里叶叠层显微系统中在LED阵列上存在的定位误差示意图 [42]。(a) X-Y平面上的误差;(b) 由于LED阵列存在的角度偏移导致的位姿偏差
Figure 11. Schematic diagram of the positioning errors present on the LED array in the Fourier ptychographic microscopy system [42]. (a) Errors in the X-Y plane; (b) Pose misalignment due to the angular offset of the LED array
图 13 本课题组设计的单次远程合成孔径成像系统获取的车辆动态追逐成像结果[48]。(a) 成像结果对比;(b, c) 细节放大区域对比;(d, e) PSNR及SSIM对比以及两车位移对比
Figure 13. Constructed vehicle dynamic pursuit imaging results[48]. (a) Comparison of imaging results; (b, c) Comparison of magnified details; (d, e) Comparison of PSNR and SSIM as well as comparison of two car displacements
图 14 基于准平面波的12 m远场成像实验。(a) 系统的实验设置;(b) 扑克牌场景作为检测目标;(c) 系统的部分区域放大和低分辨率图像捕获;(d) 子孔径的目标的原始图像和相应的剖线图;(e) 累积平均法的结果和相应的剖线图;(f) 利用所提出方法的重建结果和相应的剖线图
Figure 14. 12 m far-field imaging experiments based on quasi-plane wave. (a) Experimental setup of the R-FP system; (b) The poker card scenario as the detection target; (c) Partial area enlargement of the R-FP system and low-resolution image capture; (d) Raw image of target by the sub-aperture and corresponding line profile; (e) The result of cumulative averaging method and corresponding line profile; (f) Reconstruction result of R-FP with TV regularization and corresponding line profile
图 19 (a) 分层多级透镜阵列与非均匀分层多级透镜阵列[72-73];(b) 六边形阵列结构及其三维结构模型[74];(c) 等间距同心环排布的透镜阵列及其基线配对方式[75]
Figure 19. (a) Hierarchical multistage lens array with non-uniform hierarchical multistage lens array[72-73] ; (b) Hexagonal array structure and its 3D structure model[74]; (c) Equally spaced concentric ring arrangement of the lens array and its baseline pairing method[75]
图 22 (a) 基于自相关探测的孔径合成原理示意图;(b) 基于自相关探测的合成孔径成像光路;(c, d) 孔径合成前后的重建结果及其细节对比[91]
Figure 22. (a) Schematic diagram of the principle of aperture synthesis based on autocorrelation detection; (b) Synthetic aperture imaging optical path based on autocorrelation detection; (c, d) Reconstruction results before and after aperture synthesis and detail comparison[91]
-
[1] 左超, 陈钱. 分辨率、超分辨率与空间带宽积拓展−从计算光学成像角度的一些思考[J]. 中国光学(中英文), 2022, 15(6): 1105−1166. doi: 10.37188/CO.2022-0105
Zuo C, Chen Q. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging[J]. Chin Opt, 2022, 15(6): 1105−1166. doi: 10.37188/CO.2022-0105
[2] 左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与激光工程, 2022, 51(2): 20220110. doi: 10.3788/IRLA20220110
Zuo C, Chen Q. Computational optical imaging: an overview[J]. Infrared Laser Eng, 2022, 51(2): 20220110. doi: 10.3788/IRLA20220110
[3] 张润南, 蔡泽伟, 孙佳嵩, 等. 光场相干测量及其在计算成像中的应用[J]. 激光与光电子学进展, 2021, 58(18): 1811003. doi: 10.3788/LOP202158.1811003
Zhang R N, Cai Z W, Sun J S, et al. Optical-field coherence measurement and its applications in computational imaging[J]. Laser Optoelectron Prog, 2021, 58(18): 1811003. doi: 10.3788/LOP202158.1811003
[4] Wang B W, Zou Y, Zhang L F, et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J]. Opt Lasers Eng, 2022, 156: 107078. doi: 10.1016/j.optlaseng.2022.107078
[5] Fan Y, Sun J S, Shu Y F, et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination[J]. Laser Photon Rev, 2023, 17(3): 2200201. doi: 10.1002/lpor.202200201
[6] Hellerer T, Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Appl Phys Lett, 2004, 85(1): 25−27. doi: 10.1063/1.1768312
[7] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km[J]. Optica, 2021, 8(3): 344−349. doi: 10.1364/OPTICA.408657
[8] Wang B W, Zou Y, Zhang L F, et al. Low-light-level image super-resolution reconstruction based on a multi-scale features extraction network[J]. Photonics, 2021, 8(8): 321. doi: 10.3390/photonics8080321
[9] Holloway J. Synthetic apertures for visible imaging using Fourier ptychography[D]. Houston: Rice University, 2016.
[10] Kirmani A, Venkatraman D, Shin D, et al. First-photon imaging[J]. Science, 2014, 343(6166): 58−61. doi: 10.1126/science.1246775
[11] Ryle M, Vonberg D D. Solar radiation on 175 Mc. /s[J]. Nature, 1946, 158(4010): 339−340. doi: 10.1038/158339b0
[12] Napier P J, Thompson A R, Ekers R D. The very large array: design and performance of a modern synthesis radio telescope[J]. Proc IEEE, 1983, 71(11): 1295−1320. doi: 10.1109/PROC.1983.12765
[13] Ouchi K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sens, 2013, 5(2): 716−807. doi: 10.3390/rs5020716
[14] Moreira A, Prats-Iraola P, Younis M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geosci Remote Sens Mag, 2013, 1(1): 6−43. doi: 10.1109/MGRS.2013.2248301
[15] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 1966, 56(11): 1463−1471. doi: 10.1364/JOSA.56.001463
[16] 张明珠, 王海仁, 左营喜, 等. 射电望远镜结构技术发展综述[J]. 华中科技大学学报(自然科学版), 2023, 51(1): 48−58. doi: 10.13245/j.hust.239104
Zhang M Z, Wang H R, Zuo Y X, et al. Review of the technical development of the structures of radio telescopes[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2023, 51(1): 48−58. doi: 10.13245/j.hust.239104
[17] Ryle M, Hewish A. The synthesis of large radio telescopes[J]. Mon Not Roy Astron Soc, 1960, 120(3): 220−230. doi: 10.1093/mnras/120.3.220
[18] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proc Roy Soc A Math Phys Eng Sci, 1949, 197(1051): 454−487. doi: 10.1098/rspa.1949.0075
[19] Gabor D, Goss W P. Interference microscope with total wavefront reconstruction[J]. J Opt Soc Am, 1966, 56(7): 849−858. doi: 10.1364/JOSA.56.000849
[20] Aleksoff C C, Accetta J S, Peterson L M, et al. Synthetic aperture imaging with a pulsed Co2 tea laser[J]. Proc SPIE, 1987, 0783: 29−41. doi: 10.1117/12.940575
[21] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction[J]. Opt Express, 2011, 19(13): 12027−12038. doi: 10.1364/OE.19.012027
[22] Kahraman S, Bacher R. A comprehensive review of hyperspectral data fusion with lidar and sar data[J]. Annu Rev Control, 2021, 51: 236−253. doi: 10.1016/j.arcontrol.2021.03.003
[23] Mo D, Wang R, Wang N, et al. Three-dimensional inverse synthetic aperture lidar imaging for long-range spinning targets[J]. Opt Lett, 2018, 43(4): 839−842. doi: 10.1364/OL.43.000839
[24] Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Opt Lett, 2002, 27(22): 1983−1985. doi: 10.1364/OL.27.001983
[25] Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Appl Opt, 2005, 44(35): 7621−7629. doi: 10.1364/AO.44.007621
[26] Li J J, Zhou N, Sun J S, et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy[J]. Light Sci Appl, 2022, 11(1): 154. doi: 10.1038/s41377-022-00815-7
[27] Hilaire P S, Benton S A, Lucente M. Synthetic aperture holography: a novel approach to three-dimensional displays[J]. J Opt Soc Am A, 1992, 9(11): 1969−1977. doi: 10.1364/JOSAA.9.001969
[28] Martínez-León L, Javidi B. Synthetic aperture single-exposure on-axis digital holography[J]. Opt Express, 2008, 16(1): 161−169. doi: 10.1364/OE.16.000161
[29] Mirsky S K, Shaked N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J]. Opt Express, 2019, 27(19): 26708−26720. doi: 10.1364/OE.27.026708
[30] Zheng G A, Shen C, Jiang S W, et al. Concept, implementations and applications of Fourier ptychography[J]. Nat Rev Phys, 2021, 3(3): 207−223. doi: 10.1038/s42254-021-00280-y
[31] Pan A, Zuo C, Yao B L. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Rep Prog Phys, 2020, 83(9): 096101. doi: 10.1088/1361-6633/aba6f0
[32] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nat Photonics, 2013, 7(9): 739−745. doi: 10.1038/nphoton.2013.187
[33] Konda P C, Loetgering L, Zhou K C, et al. Fourier ptychography: current applications and future promises[J]. Opt Express, 2020, 28(7): 9603−9630. doi: 10.1364/OE.386168
[34] 孙佳嵩. 基于傅立叶叠层成像的大视场高分辨率定量相位显微成像方法研究[D]. 南京: 南京理工大学, 2019.
Sun J S. Research on wide-field high-resolution quantitative phase microscopy methods based on Fourier ptychography[D]. Nanjing: Nanjing University of Science and Technology, 2019.
[35] 孙佳嵩, 张玉珍, 陈钱, 等. 傅里叶叠层显微成像技术: 理论、发展和应用[J]. 光学学报, 2016, 36(10): 1011005. doi: 10.3788/aos201636.1011005
Sun J S, Zhang Y Z, Chen Q, et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Opt Sin, 2016, 36(10): 1011005. doi: 10.3788/aos201636.1011005
[36] Dong S Y, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Opt Express, 2014, 22(11): 13586−13599. doi: 10.1364/OE.22.013586
[37] Holloway J, Asif M S, Sharma M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Trans Comput Imaging, 2016, 2(3): 251−265. doi: 10.1109/TCI.2016.2557067
[38] Sun J S, Chen Q, Zhang Y Z, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Opt Express, 2016, 24(14): 15765−15781. doi: 10.1364/OE.24.015765
[39] Holloway J, Wu Y C, Sharma M K, et al. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Sci Adv, 2017, 3(4): e1602564. doi: 10.1126/sciadv.1602564
[40] 李志新. 基于相位信息的远场高分辨率光学成像技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2020.
Li Z X. Researches on far field high resolution optical imaging technology based on phase information[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2020.
[41] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256−1262. doi: 10.1016/j.ultramic.2009.05.012
[42] Sun J S, Chen Q, Zhang Y Z, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomed Opt Express, 2016, 7(4): 1336−1350. doi: 10.1364/BOE.7.001336
[43] Cui B Q, Zhang S H, Wang Y C, et al. Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform[J]. Opt Express, 2022, 30(12): 20697−20711. doi: 10.1364/OE.459908
[44] Zhao M, Zhang X H, Tian Z M, et al. Neural network model with positional deviation correction for Fourier ptychography[J]. J Soc Inf Dis, 2021, 29(10): 749−757. doi: 10.1002/jsid.1030
[45] 何承刚, 朱友强, 王斌. 基于粒子群优化的宏观傅里叶叠层成像位置失配校准[J]. 光学 精密工程, 2022, 30(23): 2975−2986. doi: 10.37188/OPE.20223023.2975
He C G, Zhu Y Q, Wang B. Position misalignment correction method for macroscopic Fourier ptychography based on particle swarm optimization[J]. Opt Precision Eng, 2022, 30(23): 2975−2986. doi: 10.37188/OPE.20223023.2975
[46] Wang C Y, Hu M H, Takashima Y, et al. Snapshot ptychography on array cameras[J]. Opt Express, 2022, 30(2): 2585−2598. doi: 10.1364/OE.447499
[47] Wu J C, Yang F, Cao L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Opt Lasers Eng, 2022, 155: 107068. doi: 10.1016/j.optlaseng.2022.107068
[48] Wang B W, Li S, Chen Q, et al. Learning-based single-shot long-range synthetic aperture Fourier ptychographic imaging with a camera array[J]. Opt Lett, 2023, 48(2): 263−266. doi: 10.1364/OL.479074
[49] Ma X H, Wang A T, Ma F H, et al. Speckle reduction using phase plate array and lens array[J]. Opto-Electron Adv, 2020, 3(1): 190036. doi: 10.29026/oea.2020.190036
[50] Fan Y, Sun J S, Chen Q, et al. Adaptive denoising method for Fourier ptychographic microscopy[J]. Opt Commun, 2017, 404: 23−31. doi: 10.1016/j.optcom.2017.05.02
[51] Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring[J]. IEEE Trans Image Process, 2012, 21(4): 1715−1728. doi: 10.1109/TIP.2011.2176954
[52] Li Z X, Wen D S, Song Z X, et al. Sub-diffraction visible imaging using macroscopic Fourier ptychography and regularization by denoising[J]. Sensors, 2018, 18(9): 3154. doi: 10.3390/s18093154
[53] Shamshad F, Abbas F, Ahmed A. Deep ptych: subsampled Fourier ptychography using generative priors[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 7720–7724. https://doi.org/10.1109/ICASSP.2019.8682179.
[54] Li B P, Ma C W, Ersoy O K, et al. Fourier ptychography reconstruction based on reweighted amplitude flow with regularization by denoising and deep decoder[J]. IEEE Photonics J, 2023, 15(1): 8500110. doi: 10.1109/JPHOT.2022.3230422
[55] Yang X, Konda P C, Xu S Q, et al. Quantized Fourier ptychography with binary images from SPAD cameras[J]. Photonics Res, 2021, 9(10): 1958−1969. doi: 10.1364/PRJ.427699
[56] Li S, Wang B W, Liang K Y, et al. Far-field synthetic aperture imaging via fourier ptychography with quasi‐plane wave illumination[J]. Adv Photonics Res, 2023, 4(10): 2300180. doi: 10.1002/adpr.202300180
[57] Meinel A B, Shannon R R, Whipple F L, et al. A large multiple mirror telescope (MMT) project[J]. Optical Engineering, 1972, 11(2): 110233. doi: 10.1117/12.7971604
[58] Hege E K, Beckers J M, Strittmatter P A, et al. Multiple mirror telescope as a phased array telescope[J]. Appl Opt, 1985, 24(16): 2565−2576. doi: 10.1364/AO.24.002565
[59] Gardner J P, Mather J C, Clampin M, et al. The james webb space telescope[J]. Space Sci Rev, 2006, 123(4): 485−606. doi: 10.1007/s11214-006-8315-7
[60] Golay M J E. Point arrays having compact, nonredundant autocorrelations[J]. J Opt Soc Am, 1971, 61(2): 272−273. doi: 10.1364/JOSA.61.000272
[61] Cornwell T J. A novel principle for optimization of the instantaneous Fourier plane coverage of correction arrays[J]. IEEE Trans Antennas Propag, 1988, 36(8): 1165−1167.
[62] Chung S J, Miller D W, de Weck O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Opt Eng, 2004, 43(9): 2156−2167. doi: 10.1117/1.1779232
[63] Bell K D, Boucher R H, Vacek R, et al. Assessment of large aperture lightweight imaging concepts[C]//Proceedings of 1996 IEEE Aerospace Applications Conference, 1996: 187–203. https://doi.org/10.1109/AERO.1996.496063.
[64] Fienup J R, Griffith D K, Harrington L, et al. Comparison of reconstruction algorithms for images from sparse-aperture systems[C]//Image Reconstruction from Incomplete Data II. SPIE, 2002, 4792: 1-8.
[65] 朱锡芳, 吴峰, 陶纯堪. 稀疏孔径光学系统成像恢复算法研究[J]. 光子学报, 2007, 36(12): 2319−2324.
Zhu X F, Wu F, Tao C K. Research on image restoration for sparse aperture systems[J]. Acta Photonica Sin, 2007, 36(12): 2319−2324.
[66] Xie Z L, Qi B, Ma H T, et al. Optical transfer function reconstruction in incoherent Fourier ptychography[J]. Chin Phys Lett, 2016, 33(4): 044206. doi: 10.1088/0256-307X/33/4/044206
[67] Tang J, Wu J, Wang K Q, et al. RestoreNet-Plus: image restoration via deep learning in optical synthetic aperture imaging system[J]. Opt Lasers Eng, 2021, 146: 106707. doi: 10.1016/j.optlaseng.2021.106707
[68] Glindemann A, Algomedo J, Amestica R, et al. The VLTI — a status report[M]//Garcia P J V, Glindemann A, Henning T, et al. The Very Large Telescope Interferometer Challenges for the Future. Dordrecht: Springer, 2003: 35–44. https://doi.org/10.1007/978-94-017-0157-0_3.
[69] Haguenauer P, Alonso J, Bourget P, et al. The very large telescope Interferometer: 2010 edition[J]. Proc SPIE, 2010, 7734: 773404. doi: 10.1117/12.857070
[70] Kendrick R L, Duncan A, Ogden C, et al. Flat-panel space-based space surveillance sensor[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013: 9.
[71] Kendrick R L, Duncan A, Ogden C, et al. Segmented planar imaging detector for EO reconnaissance[C]//Proceedings of the Computational Optical Sensing and Imaging 2013, 2013: CM4C. 1. https://doi.org/10.1364/COSI.2013.CM4C.1.
[72] Gao W P, Wang X R, Ma L, et al. Quantitative analysis of segmented planar imaging quality based on hierarchical multistage sampling lens array[J]. Opt Express, 2019, 27(6): 7955−7967. doi: 10.1364/OE.27.007955
[73] Gao W P, Yuan Y, Wang X R, et al. Quantitative analysis and optimization design of the segmented planar integrated optical imaging system based on an inhomogeneous multistage sampling lens array[J]. Opt Express, 2021, 29(8): 11869−11884. doi: 10.1364/OE.421298
[74] Ding C, Zhang X C, Liu X Y, et al. Structure design and image reconstruction of hexagonal-array photonics integrated interference imaging system[J]. IEEE Access, 2020, 8: 139396−139403. doi: 10.1109/ACCESS.2020.3013316
[75] Wang K, Zhu Y Q, An Q C, et al. Even sampling photonic-integrated interferometric array for synthetic aperture imaging[J]. Opt Express, 2022, 30(18): 32119−32128. doi: 10.1364/OE.468499
[76] Liu G, Wen D S, Song Z X. System design of an optical interferometer based on compressive sensing[J]. Mon Not Roy Astron Soc, 2018, 478(2): 2065−2073. doi: 10.1093/mnras/sty1167
[77] Liu G, Wen D S, Song Z X, et al. Optimized design of an emerging optical imager using compressive sensing[J]. Optics Laser Technol, 2019, 110: 158−164. doi: 10.1016/j.optlastec.2018.08.046
[78] Chen T B, Zeng X F, Zhang Z Y, et al. REM: a simplified revised entropy image reconstruction for photonics integrated interference imaging system[J]. Opt Commun, 2021, 501: 127341. doi: 10.1016/j.optcom.2021.127341
[79] Zhang Z R, Li H Y, Lv G M, et al. Deep learning-based image reconstruction for photonic integrated interferometric imaging[J]. Opt Express, 2022, 30(23): 41359−41373. doi: 10.1364/OE.469582
[80] Scott R P, Su T, Ogden C, et al. Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging[C]//Proceedings of 2014 IEEE Photonics Conference, 2014: 1–2. https://doi.org/10.1109/IPCon.2014.7092975.
[81] Thurman S T, Kendrick R L, Duncan A, et al. System design for A SPIDER imager[C]//Proceedings of the Frontiers in Optics 2015, 2015: FM3E. 3. https://doi.org/10.1364/FIO.2015.FM3E.3.
[82] Yoo B S J. Low-mass planar photonic imaging sensor[EB/OL]. (2014-07-29)[2021-01-05]. https://www.nasa.gov/general/low-mass-planar-photonic-imaging-sensor.
[83] Badham K, Kendrick R L, Wuchenich D, et al. Photonic integrated circuit-based imaging system for SPIDER[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim, 2017: 1–5. https://doi.org/10.1109/CLEOPR.2017.8118616.
[84] Su T H, Scott R P, Ogden C, et al. Experimental demonstration of interferometric imaging using photonic integrated circuits[J]. Opt Express, 2017, 25(11): 12653−12665. doi: 10.1364/OE.25.012653
[85] Su T H, Liu G Y, Badham K E, et al. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager[J]. Opt Express, 2018, 26(10): 12801−12812. doi: 10.1364/OE.26.012801
[86] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Opt Letters, 2007, 32(8): 912−914. doi: 10.1364/OL.32.000912
[87] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Opt Express, 2010, 18(2): 962−972. doi: 10.1364/OE.18.000962
[88] Katz B, Rosen J. Could SAFE concept be applied for designing a new synthetic aperture telescope?[J]. Opt Express, 2011, 19(6): 4924−4936. doi: 10.1364/OE.19.004924
[89] Bulbul A, Rosen J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time[J]. Photonics Res, 2021, 9(7): 1172−1181. doi: 10.1364/PRJ.422381
[90] Guan H, Hu Y, Zeng J, et al. Super-resolution imaging by synthetic aperture with incoherent illumination[C]// Computational Imaging VII. SPIE, 2023, 12523: 100-104. https://spie.org/Publications/Proceedings/Paper/10.1117/12.2665635?origin_id=x4323&start_year=2023