弹光调制器谐振特性研究及其谐振频率自跟踪

李坤钰,李克武,刘坤,等. 弹光调制器谐振特性研究及其谐振频率自跟踪[J]. 光电工程,2023,50(4): 220249. doi: 10.12086/oee.2023.220249
引用本文: 李坤钰,李克武,刘坤,等. 弹光调制器谐振特性研究及其谐振频率自跟踪[J]. 光电工程,2023,50(4): 220249. doi: 10.12086/oee.2023.220249
Li K Y, Li K W, Liu K, et al. Research on resonance characteristics of photoelastic modulators and self-tracking of resonant frequency[J]. Opto-Electron Eng, 2023, 50(4): 220249. doi: 10.12086/oee.2023.220249
Citation: Li K Y, Li K W, Liu K, et al. Research on resonance characteristics of photoelastic modulators and self-tracking of resonant frequency[J]. Opto-Electron Eng, 2023, 50(4): 220249. doi: 10.12086/oee.2023.220249

弹光调制器谐振特性研究及其谐振频率自跟踪

  • 基金项目:
    国家自然科学基金资助项目(62205310)
详细信息
    作者简介:
    *通讯作者: 王志斌,wangzhibin@nuc.edu.cn
  • 中图分类号: O436

Research on resonance characteristics of photoelastic modulators and self-tracking of resonant frequency

  • Fund Project: National Natural Science Foundation of China (62205310)
More Information
  • 弹光调制器是一种由各向同性的弹光晶体和压电晶体组成的高品质因数热机电耦合器件,广泛用于偏振测量、光谱测量等诸多领域。但是在高压谐振状态下,其谐振频率会随着温度变化出现漂移,导致弹光调制器的相位调制幅值不稳定以及驱动效率降低。针对该问题,首先对弹光调制器谐振频率特性进行分析,建立了弹光调制器及其高压谐振驱动电路的复合谐振网络模型,提出了利用谐振网络的幅频特性进行频率跟踪的实现方法,并设计了基于现场可编程门阵列(field programmable gate array,FPGA)的控制测试系统,实现了谐振频率跟踪以及调制幅度的测量。通过测试验证了该方案可有效进行谐振频率跟踪,提高了弹光调制器的稳定性以及驱动效率,测试时长大于90 min,相位调制幅度的标准偏差为0.83% rad。

  • 加载中
  • 图 1  PEM结构及其振动示意图

    Figure 1.  Schematic diagram of the PEM structure and its vibration

    图 2  PEM高压谐振电路与PEM的复合谐振网络示意图

    Figure 2.  Schematic diagram of the composite resonant network of a high-voltage resonant circuit and PEM

    图 3  $ {L}_{0} $两端电压随频率变化曲线

    Figure 3.  Variation curve of the voltage across $ {L}_{0} $ with frequency

    图 4  谐振自跟踪系统结构框图

    Figure 4.  Structure block diagram of the resonant self-tracking system

    图 5  软件控制流程图

    Figure 5.  Control flow chart of the software

    图 6  测试系统结构框图

    Figure 6.  Test system structure diagram

    图 7  J4/J2与调制幅度$ {\delta }_{0} $对应关系

    Figure 7.  Correspondence between J4/J2 and modulation amplitude $ {\delta }_{0} $

    图 8  扫频测试结果

    Figure 8.  Frequency sweep test results

    图 9  有无频率跟踪下相位调制幅度变化

    Figure 9.  Phase modulation amplitude change with and without frequency tracking

    图 10  PEM谐振频率变化曲线

    Figure 10.  PEM resonance frequency curve

    图 11  典型温度下测试结果

    Figure 11.  Test results at typical temperature

  • [1]

    张敏娟. 弹光调制傅里叶变换光谱复原高速数据处理技术研究[D]. 太原: 中北大学, 2013.

    Zhang M J. The research of high-speed data processing technology of the photo-elastic modulation fourier transform spectral reconstruction[D]. Taiyuan: North University of China, 2013.

    [2]

    Hipps K W, Crosby G A. Applications of the photoelastic modulator to polarization spectroscopy[J]. J Phys Chem, 1979, 83(5): 555−562. doi: 10.1021/j100468a001

    [3]

    Su F, Zhang B W, Li T H. High speed stress measurement technique based on photoelastic modulator (PEM) and galvano-scanner[J]. Opt Lasers Eng, 2021, 136: 106306. doi: 10.1016/j.optlaseng.2020.106306

    [4]

    Wang S, Han X, Wang Y N, et al. Dispersion of the retardation of a photoelastic modulator[J]. Appl Sci, 2019, 9(2): 341. doi: 10.3390/app9020341

    [5]

    Quan W, Wang Q H, Zhai Y Y. A dual closed-loop drive and control system of photoelastic modulator for atomic magnetometer[J]. Meas Sci Technol, 2018, 29(6): 065105. doi: 10.1088/1361-6501/aab6f4

    [6]

    Hirschy L, Wang B L, Wolf J, et al. Basic optical properties of the photoelastic modulator. Part III: thermal properties[J]. Proc SPIE, 2012, 8486: 848619. doi: 10.1117/12.930285

    [7]

    梁振坤, 李晓, 王志斌, 等. 基于驱动电压自适应调节的弹光调制[J]. 中国激光, 2021, 48(11): 1104001. doi: 10.3788/CJL202148.1104001

    Liang Z K, Li X, Wang Z B, et al. Photo-elastic modulation based on adaptive regulation of driving voltage[J]. Chin J Lasers, 2021, 48(11): 1104001. doi: 10.3788/CJL202148.1104001

    [8]

    陈光威, 安永泉, 王志斌, 等. 弹光调制的频率自跟踪技术[J]. 光电工程, 2015, 42(10): 21−26,32. doi: 10.3969/j.issn.1003-501X.2015.10.004

    Chen G W, An Y Q, Wang Z B, et al. Self tracking technology of photoelastic modulation frequency[J]. Opto-Electron Eng, 2015, 42(10): 21−26,32. doi: 10.3969/j.issn.1003-501X.2015.10.004

    [9]

    Wang B L, Hinds E, Krivoy E. Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element[J]. Proc SPIE, 2009, 7461: 746110. doi: 10.1117/12.826392

    [10]

    魏海潮. 弹光调制器及其高压驱动技术研究[D]. 太原: 中北大学, 2013.

    Wei H C. The study of photoelastic modulator and its high-voltage drive technology[D]. Taiyuan: North University of China, 2013.

    [11]

    王艳超. 弹光调制傅里叶变换光谱仪稳定性研究[D]. 太原: 中北大学, 2014.

    Wang Y C. The research on stability of photoelastic modulation fourier transform spectrometer[D]. Taiyuan: North University of China, 2014.

    [12]

    李健. 数字锁相放大器在微弱光电信号检测中的应用研究[D]. 长春: 吉林大学, 2016.

    Li J. Research on the application of digital lock-in amplifier in the detection of weak photoelectric signal[D]. Changchun: Jilin University, 2016.

    [13]

    周军. 光弹调制器应用的Mueller矩阵分析[J]. 常熟高专学报, 2001, 15(4): 19−22. doi: 10.3969/j.issn.1008-2794.2001.04.007

    Zhou J. Mueller matrix analysis of photoelastic modulator[J]. J Changshu Coll, 2001, 15(4): 19−22. doi: 10.3969/j.issn.1008-2794.2001.04.007

    [14]

    Zeng A J, Huang L H, Dong Z R, et al. Calibration method for a photoelastic modulator with a peak retardation of less than a half-wavelength[J]. Appl Opt, 2007, 46(5): 699−703. doi: 10.1364/AO.46.000699

    [15]

    Wang M W, Tsai F H, Chao Y F. In situ calibration technique for photoelastic modulator in ellipsometry[J]. Thin Solid Films, 2004, 455–456: 78−83. doi: 10.1016/j.tsf.2003.12.048

    [16]

    武燕婷, 熊伟, 李超波, 等. 光弹调制器谐振特性的研究及验证[J]. 光学学报, 2021, 41(15): 1523002. doi: 10.3788/AOS202141.1523002

    Wu Y T, Xiong W, Li C B, et al. Research and verification on resonance characteristics of photoelastic modulator[J]. Acta Opt Sin, 2021, 41(15): 1523002. doi: 10.3788/AOS202141.1523002

  • 加载中

(11)

计量
  • 文章访问数:  2591
  • PDF下载数:  629
  • 施引文献:  0
出版历程
收稿日期:  2022-10-08
修回日期:  2023-02-19
录用日期:  2023-02-24
刊出日期:  2023-04-25

目录

/

返回文章
返回