Broadband and high-efficiency edge detection device based on quasi-continuous metasurface
-
摘要:
本文利用准连续纳米带组成的超表面设计了一种光学微分器件,并实现了对光学图像的一维边缘检测。该器件通过改变准连续纳米带的空间取向实现0~2π的几何相位调控,且能在较宽的波段范围内保持较高的能量效率。仿真结果表明,当照明波长从400 nm增加至1000 nm时,该准连续器件均能实现清晰的边缘检测效果。其能量效率最高为90.27% (600 nm波长处),平均能量效率为64.57% (400 nm~1000 nm)。可以预期,本文所提方法能促进准连续超表面在图像信息处理、超快光学模拟计算等方面的应用。
Abstract:In this paper, we design an optical differential device based on quasi-continuous metasurface and realize one-dimensional edge detection of an optical image. By changing the spatial orientation of quasi-continuous nanostrips, the device achieves geometric phase in the range of 0~2π, and maintains high energy efficiency over a wide wavelength range. The simulation results show that when the illumination wavelength increases from 400 nm to 1000 nm, the quasi-continuous meta-device can achieve clear images for the target edge. The maximum energy efficiency is 90.27% (the incident wavelength is 600 nm) and the average energy efficiency is 64.57% (the incident wavelength changes from 400 nm to 1000 nm). It can be expected that the proposed method can promote the application of quasi-continuous metasurface in image information processing and ultrafast optical computation.
-
Key words:
- quasi-continuous /
- metasurface /
- broadband /
- high-efficiency /
- edge detection
-
Overview: Image edge extraction is a widely used and rapidly developing technology, playing an important role in medical imaging, enhanced vision, automatic driving and other fields. In recent years, there has been growing interest in developing miniature metasurface devices to obtain image edge information. Currently, it has been reported that discrete metasurface edge detection devices are used to obtain image edge information, but discrete metasurfaces often maintain a high energy efficiency only near the preset wavelength, and the energy efficiency decreases when deviating from the preset wavelength, which will limit the operating bandwidth of the metasurface optical computing device. Here, an optical differential device is designed by using a metasurface composed of quasi-continuous nanostrips to realize one-dimensional images edge detection. By changing the spatial orientation of quasi-continuous nanostrips, the device achieves geometric phase in the range of 0~2π, and maintains high energy efficiency over a wide wavelength range. The optical path system consists of two linear polarizers and two lenses with the same focal length, of which two lenses are placed in a confocal position to form a classical 4f optical system. The designed quasi-continuous metasurface edge detection device is placed on the Fourier plane of the 4f optical system. The original image is located on the object plane of the 4f optical system (at the front focal plane of the lens 1), and the object edge information is finally obtained on the image plane of the 4f optical system (at the rear focal plane of the lens 2). The simulation results show that the designed sample can achieve high average energy efficiency edge detection in the whole visible and near-infrared bands. Specifically, the quasi-continuous meta-device can obtain a clear image of object edge in the wavelength range of 400 nm~1000 nm, the energy efficiency of the device reaches 90.27% at the wavelength of 600 nm, and the average energy efficiency is 64.57% at the wavelength of 400 nm~1000 nm. Compared with the traditional edge detection devices based on discrete metasurface, the quasi-continuous devices have higher broadband average energy efficiency. Hopefully, this work enjoys many research merits in signal processing, optical communication and machine vision.
-
图 4 不同波长入射时准连续型(蓝色五角星)和离散型(红色菱形)超表面边缘检测器件的能量效率;灰色区域表示等效光栅周期变化时的交叉偏振能量效率
Figure 4. Energy efficiency of the quasi-continuous (blue pentagrams) and discrete (red diamonds) metasurface edge detection devices with different incidence wavelengths; The gray area represents the cross-polarization energy efficiency with changing the equivalent grating’s period
-
[1] Liu F F, Wang T, Qiang L, et al. Compact optical temporal differentiator based on silicon microring resonator[J]. Opt Express, 2008, 16(20): 15880−15886. doi: 10.1364/OE.16.015880
[2] Slavik R, Park Y, Ayotte N, et al. Photonic temporal integrator for all-optical computing[J]. Opt Express, 2008, 16(22): 18202−18214. doi: 10.1364/OE.16.018202
[3] Yang T, Dong J J, Lu L J, et al. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator[J]. Sci Rep, 2014, 4: 5581. doi: 10.1038/srep05581
[4] Doskolovich L L, Bykov D A, Bezus E A, et al. Spatial differentiation of optical beams using phase-shifted Bragg grating[J]. Opt Lett, 2014, 39(5): 1278−1281. doi: 10.1364/OL.39.001278
[5] Bykov D A, Doskolovich L L, Morozov A A, et al. First-order optical spatial differentiator based on a guided-mode resonant grating[J]. Opt Express, 2018, 26(8): 10997−11006. doi: 10.1364/OE.26.010997
[6] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713
[7] Luo X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Adv Mater, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680
[8] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001
Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001
[9] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008
[10] Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031
[11] Gao H, Fan X H, Xiong W, et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electron Adv, 2021, 4(11): 210030. doi: 10.29026/oea.2021.210030
[12] Tang D L, Chen L, Liu J, et al. Achromatic metasurface doublet with a wide incident angle for light focusing[J]. Opt Express, 2020, 28(8): 12209−12218. doi: 10.1364/OE.392197
[13] Tang D L, Chen L, Liu J J. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing[J]. Opt Express, 2019, 27(9): 12308−12316. doi: 10.1364/OE.27.012308
[14] 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399
Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399
[15] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Lett, 2012, 12(12): 6328−6333. doi: 10.1021/nl303445u
[16] Zhang X L, Pu M B, Guo Y H, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Adv Funct Mater, 2019, 29(22): 1809145. doi: 10.1002/adfm.201809145
[17] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671−10680. doi: 10.1021/acsnano.6b05453
[18] Ma X L, Pu M B, Li X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electron Adv, 2019, 2(3): 180023. doi: 10.29026/oea.2019.180023
[19] Li Y, Li X, Chen L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Adv Opt Mater, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502
[20] Jin J J, Luo J, Zhang X H, et al. Generation and detection of orbital angular momentum via metasurface[J]. Sci Rep, 2016, 6: 24286. doi: 10.1038/srep24286
[21] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014
[22] 李柱, 王长涛, 孔维杰, 等. 用于可见光波段切趾成像的宽带消色差超表面滤波器[J]. 光电工程, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466
Li Z, Wang C T, Kong W J, et al. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electron Eng, 2021, 48(5): 200466. doi: 10.12086/oee.2021.200466
[23] Zhou J X, Qian H L, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proc Natl Acad Sci USA, 2019, 116(23): 11137−11140. doi: 10.1073/pnas.1820636116
[24] 谢智强, 贺炎亮, 王佩佩, 等. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测[J]. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
Xie Z Q, He Y L, Wang P P, et al. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface[J]. Acta Phys Sin, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
[25] Abdollahramezani S, Chizari A, Dorche A E, et al. Dielectric metasurfaces solve differential and integro-differential equations[J]. Opt Lett, 2017, 42(7): 1197−1200. doi: 10.1364/OL.42.001197
[26] Li X, Pu M B, Wang Y Q, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Adv Opt Mater, 2016, 4(5): 659−663. doi: 10.1002/adom.201500713
[27] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light Sci Appl, 2017, 6(6): e16276. doi: 10.1038/lsa.2016.276
[28] Wang Y Q, Pu M B, Zhang Z J, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Sci Rep, 2016, 5: 17733. doi: 10.1038/srep17733
[29] Guo Y H, Yan L S, Pan W, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Sci Rep, 2016, 6: 30154. doi: 10.1038/srep30154
[30] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as compact Bessel beam generators[J]. Sci Rep, 2016, 6: 20524. doi: 10.1038/srep20524
[31] Kischkat J, Peters S, Gruska B, et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride[J]. Appl Opt, 2012, 51(28): 6789−6798. doi: 10.1364/AO.51.006789
[32] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proc Natl Acad Sci USA, 2016, 113(38): 10473−10478. doi: 10.1073/pnas.1611740113
[33] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
[34] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298−302. doi: 10.1126/science.1253213
[35] Zhou J X, Qian H L, Zhao J X, et al. Two-dimensional optical spatial differentiation and high-contrast imaging[J]. Natl Sci Rev, 2021, 8(6): nwaa176. doi: 10.1093/nsr/nwaa176