Research on surface plasmon refractive index sensing of gold nano cone array and gold film coupling structure
-
摘要:
设计了基于SiO2薄膜间隔的金纳米锥与金薄膜耦合结构表面等离子体共振折射率传感器。使用时域有限差分法研究了复合结构中的表面等离子体共振模式,复合结构不仅能够激发局域表面等离子体共振,也可激发传播表面等离子体共振。入射电磁波的能量部分通过单个金纳米锥耦合到局域表面等离子体,部分通过金纳米锥阵列二维光栅耦合到传播表面等离子体。在待测物折射率1.30~1.40的范围内,对复合结构的反射光谱进行了模拟研究,发现共振波长与分析物折射率呈线性关系,且由于局域和传播表面等离子体的高效激发,反射光谱共振峰处的反射率几乎为零。此外,在最优的金纳米锥几何参数下,传播表面等离子体共振模式的半高全宽非常窄,灵敏度和品质因数分别达到770 nm/RIU和113 RIU−1,具有良好的折射率传感性能。所设计的复合结构作为表面等离子体共振传感器有望广泛应用于生物检测领域。
Abstract:A surface plasmon resonance refractive index sensor based on the coupling structure of gold nano cones and a gold film with a SiO2 film as spacer-layer is designed. The surface plasmon resonance modes in the composite structure are studied by using the Finite Difference Time Domain method. The composite structure can stimulate not only localized surface plasmon, but also propagating surface plasmon. The energy of the incident electromagnetic wave is partially coupled to the localized surface plasmon through a single gold nano cone, and partially coupled to the propagating surface plasmon through a grating of gold nano cone array. The reflection spectra of the composite structure are simulated in the refractive index range of 1.30 to 1.40. It is found that the resonance wavelength has a linear relationship with the refractive index of the analyte, and the reflectivity at the resonance is almost zero due to the strong resonance coupling between localized and propagating surface plasmon. In addition, the full width at half maximum of propagating surface plasmon resonance mode is very narrow when the geometric parameters of gold nano cone are optimized. The sensitivity and figure of merit reach 770 nm/RIU and 113 RIU−1 respectively, and it has good refractive index sensing performance. The designed composite structure is expected to be widely used in the field of biochemical detection.
-
Key words:
- gold nano cone /
- gold film /
- surface plasmon /
- refractive index sensing
-
图 3 复合结构中两种模式共振波长下的电场分布图。金纳米锥底面半径为140 nm,高度为200 nm,周期为800 nm,背景折射率为1.30. (a)和(d)为x-z平面上的电场分布, (b)和(e)为SiO2间隔层下表面和Au薄膜界面上的电场分布,(c)和(f)为分析物与SiO2间隔层上表面上的电场分布; (a)、(b)、(c)为模式1,(d)、(e)、(f)为模式2
Figure 3. Electric field distributions of the composite structure at two modes resonance wavelengths. The bottom radius, the height and the period of gold nano cone are 140 nm, 200 nm and 800 nm. The background refractive index is 1.30. (a) and (d) are the electric field distribution on the x-z plane; (b) and (e) are the electric field distribution on the lower surface of the SiO2 spacer and the interface of the Au film; (c) and (f) are the electric field distribution on the surface above the analyte and the SiO2 spacer; (a), (b) and (c) are mode 1, (d), (e) and (f) are mode 2
图 4 背景折射率1.30,不同参数下复合结构的反射光谱。(a) D为800 nm,R为140 nm,H从200 nm~240 nm;(b) D为800 nm,H为200 nm,R从100 nm~180 nm;(c) H为200 nm,R为140 nm,D从700 nm~900 nm;(d) 不同周期下模式1共振波长的仿真值与理论值
Figure 4. The background refractive index is 1.30, the reflection spectra of the composite structure under different parameters. (a) D 800 nm, R 140 nm, and H changes from 200 nm to 240 nm; (b) D 800 nm, H 200 nm, and R changes from 100 nm to 180 nm; (c) H 200 nm, R 140 nm, and D changes from 700 nm to 900 nm; (d) Simulation and theoretical values of mode 1 resonance wavelength at various period
图 6 不同待测物折射率下复合结构反射光谱共振波长与折射率变化的关系曲线。金纳米锥的底面半径为140 nm,高度为200 nm,周期为800 nm
Figure 6. Relationship curves of reflection spectrum resonance wavelength of the composite structure with refractive index change under different refractive index of object to be measured. The bottom radius of gold nano cone is 140 nm, the height is 200 nm, and the period is 800 nm
-
[1] Wang X X, Zhu J K, Tong H, et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer[J]. Chin Phys B, 2019, 28(4): 044201. doi: 10.1088/1674-1056/28/4/044201
[2] Liu C, Lü J W, Liu W, et al. Overview of refractive index sensors comprising photonic crystal fibers based on the surface Plasmon resonance effect [Invited][J]. Chin Opt Lett, 2021, 19(10): 102202. doi: 10.3788/COL202119.102202
[3] Liu C, Yang L, Liu Q, et al. Analysis of a surface Plasmon resonance probe based on photonic crystal fibers for low refractive index detection[J]. Plasmonics, 2018, 13(3): 779−784. doi: 10.1007/s11468-017-0572-7
[4] Wang X X, Zhu J K, Xu Y Q, et al. A plasmonic refractive index sensor with double self-reference characteristic[J]. Europhys Lett, 2021, 135(2): 27001. doi: 10.1209/0295-5075/135/27001
[5] Cheng T T, Gao H J, Liu G R, et al. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions[J]. Colloids Surf A-Physicochem Eng Asp, 2022, 633: 127918. doi: 10.1016/j.colsurfa.2021.127918
[6] Guan S T, Li R S, Sun X F, et al. Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis[J]. Mater Technol, 2021, 36(10): 603−615. doi: 10.1080/10667857.2020.1782062
[7] Gao H J, Zhao X X, Zhang H M, et al. Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamine B[J]. J Electron Mater, 2020, 49(9): 5248−5259. doi: 10.1007/s11664-020-08243-2
[8] Jia T X, Wang X X, Ren Y Q, et al. Incidence angle effects on the fabrication of microstructures using six-beam laser interference lithography[J]. Coatings, 2021, 11(1): 62. doi: 10.3390/coatings11010062
[9] Wang X X, Jia T X, Zhu J K, et al. Theoretical study of micro-structure fabrication by multi-beam laser interference lithography with different polarization combinations[J]. Mod Phys Lett B, 2021, 35(32): 2150459. doi: 10.1142/S0217984921504595
[10] Wang X X, Zhang J, Zhu J K, et al. Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film[J]. Chin Phys B, 2021, 31(2): 024210. doi: 10.1088/1674-1056/ac3816
[11] Chen J, Peng C, Qi S B, et al. Photonic microcavity-enhanced magnetic Plasmon resonance of metamaterials for sensing applications[J]. IEEE Photonics Technol Lett, 2019, 31(2): 113−116. doi: 10.1109/LPT.2018.2881989
[12] Chen J, Nie H, Tang C J, et al. Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials[J]. Appl Phys Express, 2019, 12(5): 052015. doi: 10.7567/1882-0786/ab14fa
[13] 张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程, 2021, 48(9): 200451. doi: 10.12086/oee.2021.200451
Zhang W J, Zeng X L, Yang A, et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]. Opto-Electron Eng, 2021, 48(9): 200451. doi: 10.12086/oee.2021.200451
[14] 张俊卿, 吴毅萍, 陈晟皓, 等. 改进型蝴蝶结超表面及在痕量铅离子检测中的应用[J]. 光电工程, 2021, 48(8): 210123. doi: 10.12086/oee.2021.210123
Zhang J Q, Wu Y P, Chen S H, et al. Optimized bow-tie metasurface and its application in trace detection of lead ion[J]. Opto-Electron Eng, 2021, 48(8): 210123. doi: 10.12086/oee.2021.210123
[15] Zhou F Q, Qin F, Yi Z, et al. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface Plasmon resonance[J]. Phys Chem Chem Phys, 2021, 23(31): 17041−17048. doi: 10.1039/D1CP03036A
[16] Yan Z D, Lu X, Du W, et al. Ultraviolet graphene ultranarrow absorption engineered by lattice Plasmon resonance[J]. Nanotechnology, 2021, 32(46): 465202. doi: 10.1088/1361-6528/ac1af9
[17] Wu X L, Zheng Y, Luo Y, et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity[J]. Phys Chem Chem Phys, 2021, 23(47): 26864−26873. doi: 10.1039/D1CP04568G
[18] Yu M D, Huang Z P, Liu Z Q, et al. Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates[J]. Sens Actuators B Chem, 2018, 262: 845−851. doi: 10.1016/j.snb.2018.02.048
[19] Liu G Q, Liu Y, Tang L, et al. Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures[J]. Nanophotonics, 2019, 8(6): 1095−1107. doi: 10.1515/nanoph-2019-0078
[20] Fu Q, Zhang D G, Chen Y K, et al. Surface enhanced Raman scattering arising from plasmonic interaction between silver Nano-cubes and a silver grating[J]. Appl Phys Lett, 2013, 103(4): 041122. doi: 10.1063/1.4816739
[21] Chu Y Z, Crozier K B. Experimental study of the interaction between localized and propagating surface plasmons[J]. Opt Lett, 2009, 34(3): 244−246. doi: 10.1364/OL.34.000244
[22] Kohandani R, Saini S S. Self-referencing plasmonic array sensors[J]. Plasmonics, 2020, 15(5): 1359−1368. doi: 10.1007/s11468-020-01155-1
[23] Abutoama M, Abdulhalim I. Self-referenced biosensor based on thin dielectric grating combined with thin metal film[J]. Opt Express, 2015, 23(22): 28667−28682. doi: 10.1364/OE.23.028667
[24] Shougaijam B, Singh S S. Structural and optical analysis of Ag nanoparticle-assisted and vertically aligned TiO2 nanowires for potential DSSCs application[J]. J Mater Sci Mater Electron, 2021, 32(14): 19052−19061. doi: 10.1007/s10854-021-06421-4
[25] Ouhibi A, Raouafi A, Lorrain N, et al. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen[J]. Sens Actuators B Chem, 2021, 330: 129352. doi: 10.1016/j.snb.2020.129352
[26] Gebavi H, Ristić D, Baran N, et al. Development of silicon nanowires based on Ag-Au metal alloy seed system for sensing technologies[J]. Sens Actuators A Phys, 2021, 331: 112931. doi: 10.1016/j.sna.2021.112931
[27] Xu B J, Jiang M Y, Chen X N, et al. Synthesis of alloyed Au-Ag nanospheres with tunable compositions and SERS enhancement effects[J]. Mater Sci Forum, 2021, 1026: 197−207. doi: 10.4028/www.scientific.net/MSF.1026.197
[28] Zhu J K, Wang X X, Qi Y P, et al. Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings[J]. Chin Phys B, 2022, 31(1): 014206. doi: 10.1088/1674-1056/ac1335
[29] Zhu W L, Xu T T, Liu W K, et al. High-performance ethanol sensor based on In2O3 nanospheres grown on silicon nanoporous pillar array[J]. Sens Actuators B Chem, 2020, 324: 128734. doi: 10.1016/j.snb.2020.128734
[30] Jiao S X, Gu S F, Yang H R, et al. Research on dual-core photonic crystal fiber based on local surface Plasmon resonance sensor with silver nanowires[J]. J Nanophotonics, 2018, 12(4): 046015. doi: 10.1117/1.JNP.12.046015
[31] Zhu L W, Cao Y Y, Chen Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electron Adv, 2021, 4(11): 210002. doi: 10.29026/oea.2021.210002
[32] Zhou F, Liu Y, Cai W P. Huge local electric field enhancement in hybrid plasmonic arrays[J]. Opt Lett, 2014, 39(5): 1302−1305. doi: 10.1364/OL.39.001302
[33] Cao J J, Sun Y, Kong Y, et al. The sensitivity of grating-based SPR sensors with wavelength interrogation[J]. Sensors, 2019, 19(2): 405. doi: 10.3390/s19020405
[34] Zhu J K, Wang X X, Wu Y, et al. Plasmonic refractive index sensors based on one- and two-dimensional gold grating on a gold film[J]. Photonic Sens, 2020, 10(4): 375−386. doi: 10.1007/s13320-020-0598-x
[35] Sharma A K, Pandey A K. Self-referenced plasmonic sensor with TiO2 grating on thin Au layer: simulated performance analysis in optical communication band[J]. J Opt Soc Am B, 2019, 36(8): F25−F31. doi: 10.1364/JOSAB.36.000F25
[36] Arora P, Talker E, Mazurski N, et al. Dispersion engineering with plasmonic Nano structures for enhanced surface Plasmon resonance sensing[J]. Sci Rep, 2018, 9(1): 9060. doi: 10.1038/s41598-018-27023-x