Research on CS-BP algorithm of tracking error prediction in fault diagnosis of photoelectric measurement system
-
摘要
近年来,随着光电测量系统的数量与复杂度的日趋增长,其故障诊断的需求也不断增加。在光电测量系统的故障诊断中,跟踪误差的预测尤为重要。本文在BP神经网络的基础上利用布谷鸟算法进行了阈值及权值的优化,提出了一种CS-BP算法。利用光电测量系统的方位引导、俯仰引导、方位编码器、俯仰编码器和时间数据,对跟踪误差进行预测。与传统神经网络算法相比,该算法利用布谷鸟出色的寻找极值特点,解决了因初始阈值及权值设置不当给神经网络算法所带来的无法得到最优解的问题。实验结果表明,与传统BP神经网络、遗传算法优化的BP神经网络(GA-BP)对比, CS-BP算法的迭代次数分别少21次和60次,且其预测平均相对误差分别低4.85%和1.57%。因此,CS-BP算法具有较快的收敛速度和较高的预测精度,适合应用在光电测量系统故障诊断中。
Abstract
In recent years, with the increasing number and complexity of photoelectric measurement systems, the demand for fault diagnosis is also increasing. In the fault diagnosis of the photoelectric measurement system, the prediction of its tracking error is particularly important. In this paper, we propose a BP neural network algorithm optimized by the Cuckoo algorithm (CS-BP). The tracking error can be predicted by using the azimuth guidance, pitch guidance, azimuth encoder, pitch encoder and time data of the optoelectronic measurement system. Compared with the traditional neural network algorithm, this algorithm uses the excellent characteristics of Cuckoo to find the extreme value, and solves the problem that the neural network algorithm cannot get the optimal solution due to the improper setting of the initial threshold and weight. The experimental results show that, the number of iterations with CS-BP is 21 and 60 less than the traditional BP neural network and the BP neural network optimized by the genetic algorithm (GA-BP), respectively. The relative errors are 4.85% and 1.57% lower, respectively. Therefore, the CS-BP algorithm has a faster convergence speed and higher prediction accuracy, and it is suitable for fault diagnosis of photoelectric measurement system.
-
Overview
Overview: In recent years, the number of new photoelectric measurement equipment has increased rapidly, the composition has become more and more complex, the accuracy has gradually improved, and the functions have become more comprehensive. During the normal life cycle of large-scale optoelectronic measurement equipment, engineers seek to maintain the performance of the equipment with the lowest possible cost and as few personnels as possible, so the demand for research on failure prediction and diagnosis technology is increasing. The traditional on-site manual diagnosis and maintenance method requires a lot of manpower and material resources, and it takes a long time to complete a test and diagnosis. The accuracy of the diagnosis is very dependent on the familiarity and experience of the operator. Once a fault occurs, it is difficult to quantify the time for positioning and troubleshooting, which affects the combat effectiveness of the equipment. In fact, major faults that affect the performance of equipment are generally easy to repair in the early stage, but often due to incomplete detection and diagnosis methods, they cannot be detected or cannot be detected on-site in time, resulting in major faults accumulated over time. In the fault diagnosis of photoelectric measurement system, the prediction of tracking error is particularly important. CS-BP algorithm has strong self-adaptive and self-learning ability, and can obtain more reliable results without additional human intervention, so it is often used for fault diagnosis and parameter prediction of large-scale systems. Based on the BP neural network, this article uses the cuckoo algorithm to optimize the threshold and weight, and proposes a CS-BP algorithm. This essay uses the azimuth guidance, pitch guidance, azimuth encoder, pitch encoder and time data of the photoelectric measurement system to predict the tracking error. Compared with the traditional neural network algorithm, the algorithm utilizes the cuckoo's excellent feature of finding extreme values, and solves the problem that the neural network algorithm cannot obtain the optimal solution due to improper initial threshold and weight settings. The experimental results show that compared with the traditional BP neural network and the BP neural network optimized by the genetic algorithm (GA-BP), the number of iterations of the CS-BP algorithm is 21 and 60 times less, and the average relative error of the prediction is 4.85% and 1.57% lower, respectively. Therefore, CS-BP algorithm has a faster convergence speed and higher prediction accuracy, and is suitable for application in fault diagnosis of optoelectronic measurement systems.
-
-
表 1 CS-BP 、GA-BP和BP三种算法实验结果对比
Table 1. Comparison of experimental results of three algorithms: CS-BP, GA-BP and BP
算法类别 迭代次数 平均相对误差/% BP 70 8.81 GA-BP 31 5.53 CS-BP 10 3.96 -
参考文献
[1] 董静怡, 庞景月, 彭宇, 等. 集成LSTM的航天器遥测数据异常检测方法[J]. 仪器仪表学报, 2019, 40(7): 22−29. doi: 10.19650/j.cnki.cjsi.J1904832
Dong J Y, Pang J Y, Peng Y, et al. Spacecraft telemetry data anomaly detection method based on ensemble LSTM[J]. Chin J Sci Instrument, 2019, 40(7): 22−29. doi: 10.19650/j.cnki.cjsi.J1904832
[2] 张怀峰, 江婧, 张香燕, 等. 面向卫星电源系统的一种新颖异常检测方法[J]. 宇航学报, 2019, 40(12): 1468−1477. doi: 10.3873/j.issn.1000-1328.2019.12.011
Zhang H F, Jiang J, Zhang X Y, et al. Novel anomaly detection method for satellite power system[J]. J Astronaut, 2019, 40(12): 1468−1477. doi: 10.3873/j.issn.1000-1328.2019.12.011
[3] 王春雷, 赵琦, 秦孝丽, 等. 基于改进相关向量机的锂电池寿命预测方法[J]. 北京航空航天大学学报, 2018, 44(9): 1998−2003. doi: 10.13700/j.bh.1001-5965.2018.0181
Wang C L, Zhao Q, Qin X L, et al. Life prediction method of lithium battery based on improved relevance vector machine[J]. J Beijing Univ Aeronaut Astronaut, 2018, 44(9): 1998−2003. doi: 10.13700/j.bh.1001-5965.2018.0181
[4] Sparthan T, Nzie W, Sohfotsing B, et al. A valorized scheme for failure prediction using ANFIS: application to train track breaking system[J]. Open J Appl Sci, 2020, 10(11): 732−757. doi: 10.4236/ojapps.2020.1011052
[5] Meyes R, Donauer J, Schmeing A, et al. A recurrent neural network architecture for failure prediction in deep drawing sensory time series data[J]. Procedia Manuf, 2019, 34: 789−797. doi: 10.1016/j.promfg.2019.06.205
[6] Shao H D, Jiang H K, Zhao H W, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mech Syst Signal Process, 2017, 95: 187−204. doi: 10.1016/j.ymssp.2017.03.034
[7] 张晓英, 史冬雪, 张琎, 等. 基于CPSO-BP神经网络的风电并网暂态电压稳定评估[J]. 智慧电力, 2021, 49(10): 38−44. doi: 10.3969/j.issn.1673-7598.2021.10.007
Zhang X Y, Shi D X, Zhang J, et al. Transient voltage stability assessment of power system integrated with wind power based on CPSO-BP neural network[J]. Smart Power, 2021, 49(10): 38−44. doi: 10.3969/j.issn.1673-7598.2021.10.007
[8] 李晓丽, 王庆福. 基于GA-BP神经网络的带式输送机故障监测系统研究[J]. 煤炭技术, 2021, 40(12): 222−224. doi: 10.13301/j.cnki.ct.2021.12.056
Li X L, Wang Q F. Research on fault monitoring system of belt conveyor based on GA-BP neural network[J]. Coal Technol, 2021, 40(12): 222−224. doi: 10.13301/j.cnki.ct.2021.12.056
[9] 徐鹏, 杨海燕, 程宁, 等. 基于优化BP神经网络的船舶动力系统故障诊断[J]. 中国舰船研究, 2021, 16(S1): 106−113. doi: 10.19693/j.issn.1673-3185.02453
Xu P, Yang H Y, Cheng N, et al. Fault diagnosis of ship power system based on optimized BP neural network[J]. Chin J Ship Res, 2021, 16(S1): 106−113. doi: 10.19693/j.issn.1673-3185.02453
[10] 郭林, 唐晶, 唐黎哲, 等. 一种基于改进BP神经网络的变压器故障诊断方法[J]. 控制与信息技术, 2021(5): 71−77. doi: 10.13889/j.issn.2096-5427.2021.05.012
Guo L, Tang J, Tang L Z, et al. A method of transformer fault diagnosis based on improved BP neural network[J]. Control Inf Technol, 2021(5): 71−77. doi: 10.13889/j.issn.2096-5427.2021.05.012
[11] 李笑竹, 陈志军, 樊小朝, 等. 基于ACS-SA文化基因算法的BP神经网络变压器故障诊断[J]. 高压电器, 2018, 54(2): 134−139,146. doi: 10.13296/j.1001-1609.hva.2018.02.022
Li X Z, Chen Z J, Fan X C, et al. Fault diagnosis of transformer based on BP neural network and ACS-SA[J]. High Voltage Appar, 2018, 54(2): 134−139,146. doi: 10.13296/j.1001-1609.hva.2018.02.022
[12] 乔维德. 基于粒子群-蛙跳算法优化BP神经网络的滚动轴承故障诊断方法[J]. 厦门理工学院学报, 2021, 29(5): 8−13. doi: 10.19697/j.cnki.1673-4432.202105002
Qiao W D. Rolling bearing fault diagnosis using optimized BP neural network by particle swarm optimization-leapfrog algorithm[J]. J Xiamen Univ Technol, 2021, 29(5): 8−13. doi: 10.19697/j.cnki.1673-4432.202105002
[13] Yang X S, Deb S. Cuckoo search via Lévy flights[C]//Proceedings of 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, 2009: 210–214.
[14] 董崇杰, 刘毅, 彭勇. 改进布谷鸟算法在人群疏散多目标优化中的应用[J]. 系统仿真学报, 2016, 28(5): 1063−1069. doi: 10.16182/j.cnki.joss.2016.05.009
Dong C J, Liu Y, Peng Y. Improved cuckoo search algorithm applied to multi-objective optimization of crowd evacuation[J]. J Syst Simul, 2016, 28(5): 1063−1069. doi: 10.16182/j.cnki.joss.2016.05.009
[15] 杨辉华, 王克, 李灵巧, 等. 基于自适应布谷鸟搜索算法的K-means聚类算法及其应用[J]. 计算机应用, 2016, 36(8): 2066−2070. doi: 10.11772/j.issn.1001-9081.2016.08.2066
Yang H H, Wang K, Li L Q, et al. K-means clustering algorithm based on adaptive cuckoo search and its application[J]. J Comput Appl, 2016, 36(8): 2066−2070. doi: 10.11772/j.issn.1001-9081.2016.08.2066
[16] 李东生, 高杨, 雍爱霞. 基于改进离散布谷鸟算法的干扰资源分配研究[J]. 电子与信息学报, 2016, 38(4): 899−905. doi: 10.11999/JEIT150726
Li D S, Gao Y, Yong A X. Jamming resource allocation via improved discrete cuckoo search algorithm[J]. J Electron Inf Technol, 2016, 38(4): 899−905. doi: 10.11999/JEIT150726
[17] 王凡, 贺兴时, 王燕, 等. 基于CS算法的Markov模型及收敛性分析[J]. 计算机工程, 2012, 38(11): 180−182,185. doi: 10.3969/j.issn.1000-3428.2012.11.055
Wang F, He X S, Wang Y. Markov model and convergence analysis based on cuckoo search algorithm[J]. Comput Eng, 2012, 38(11): 180−182,185. doi: 10.3969/j.issn.1000-3428.2012.11.055
[18] 田野岑. 基于布谷鸟搜索算法的神经网络在抽油机故障诊断中的应用[D]. 大庆: 东北石油大学, 2016.
Tian Y C. Application of cuckoo search neural network in the pumping units' fault diagnosis[D]. Daqing: Northeast Petroleum University, 2016.
[19] 杨乐, 王景霖, 李胜男, 等. GA-BP算法预测滚动轴承退化趋势[J]. 测控技术, 2021, 40(11): 131−137. doi: 10.19708/j.ckjs.2021.11.018
Yang L, Wang J L, Li S N, et al. Prediction of rolling bearing degradation trend by GA-BP algorithm[J]. Meas Control Technol, 2021, 40(11): 131−137. doi: 10.19708/j.ckjs.2021.11.018
-
访问统计