掺Pr3+固体激光器研究进展概述

曹伟航,李状,石成堃,等. 掺Pr3+固体激光器研究进展概述[J]. 光电工程,2022,49(4): 210364. doi: 10.12086/oee.2022.210364
引用本文: 曹伟航,李状,石成堃,等. 掺Pr3+固体激光器研究进展概述[J]. 光电工程,2022,49(4): 210364. doi: 10.12086/oee.2022.210364
Cao W H, Li Z, Shi C K, et al. Overview of research and development of Pr3+ doped solid-state lasers[J]. Opto-Electron Eng, 2022, 49(4): 210364. doi: 10.12086/oee.2022.210364
Citation: Cao W H, Li Z, Shi C K, et al. Overview of research and development of Pr3+ doped solid-state lasers[J]. Opto-Electron Eng, 2022, 49(4): 210364. doi: 10.12086/oee.2022.210364

掺Pr3+固体激光器研究进展概述

  • 基金项目:
    国家自然科学基金资助项目(61975168)
详细信息

Overview of research and development of Pr3+ doped solid-state lasers

  • Fund Project: National Natural Science Foundation of China (61975168)
More Information
  • 可见光激光器在激光彩色显示、激光医疗、量子信息、光通讯等领域有着十分重要的作用。三价镨离子(Pr3+)因在可见光波段存在丰富的激光能级跃迁而备受人们关注。特别是近年来,激光二极管(LD)、光泵浦半导体激光器(OPSL)等商业化泵浦源的出现,更是使得掺Pr3+固体激光器的研究得到了长足的发展。本文按照掺Pr3+固体激光器连续、脉冲和单纵模三种输出类型,介绍了每种输出类型在特定波段处的典型工作,以时间为主线对掺Pr3+固体激光器的研究历程与现状进行了概述,以及对未来掺Pr3+固体激光器的研究做了展望。

  • Overview: Visible lasers are used extensively in laser color display, laser medical treatment, quantum information, optical communication, and other applications. Trivalent Pr-ion (Pr3+) has attracted much attention due to its rich transitions in the visible band. As early as the 1960s, praseodymium-doped (Pr3+) crystals were investigated as gain mediums for laser production. Compared with the way of obtaining visible laser by optical nonlinear processes such as frequency doubling and mixing, the way of directly down converting the laser energy level by using Pr3+ doped crystal to obtain visible laser avoids the use of the nonlinear optical crystal, which makes the laser have high conversion efficiency, compact structure, good quality of laser beam, and no requirement of strict temperature control. Especially in recent years, the emergence of commercial pump sources such as laser diode (LD) and optically pumped semiconductor laser (OPSL) has made great progress in the research of Pr3+ doped solid-state lasers. In this paper, Pr3+ solid-state lasers are divided into three types: continuous-wave output type, pulse output type and single longitudinal mode output type. Among them, the continuous-wave laser is typical in green, orange and red laser bands. The laser output power can exceed the watt level. The maximum output power at 522 nm green laser is more than 4 W, and the maximum power at 607 nm orange laser is 4.88 W. The maximum power at 639 nm red laser is up to 8.14 W. For pulse laser, the laser output with a pulse width of tens to hundreds of nanoseconds can be obtained in Q-switching, and the pulse width in mode-locking is narrower. The mode-locked pulse widths of 8 ps, 400 fs and 1.1 ps are obtained at red 639 nm, orange 613 nm and 604 nm respectively. The mode-locked pulse widths of other visible optical bands have been reported to range from more than ten picoseconds to hundreds of picoseconds. In the aspect of single longitudinal mode, the research work of realizing single-frequency laser output by using Pr3+ doped crystal mainly focuses on 360 nm UV, 604 nm, 607 nm orange laser and 639 nm, 640 nm red laser. At the same time, taking time as the mainline, this paper summarizes the research history and current status of Pr3+ doped solid-state lasers, and looks forward to the future of Pr3+ doped solid-state lasers.

  • 加载中
  • 图 1  Pr3+能级结构图[11]

    Figure 1.  Energy level structure of Pr3+ [11]

    图 2  腔内倍频实验示意图[28]

    Figure 2.  Schematic diagram of intracavity frequency doubling experiment setup[28].

    图 3  实验装置示意图[50]

    Figure 3.  Schematic diagram of experimental setup[50].

    图 4  几种典型Pr:YLF连续型可见光激光的研究现状。

    Figure 4.  Research status of several typical Pr:YLF continuous-wave visible lasers.

    图 5  二极管泵浦Pr:YLF在670 nm处附近波长可切换的实验示意图[57]

    Figure 5.  Schematic diagram of the experiment of diode-pumped Pr:YLF with switchable wavelength near 670 nm[57]

    图 6  以Bi2Se3为SA的二极管泵浦调Q Pr:YLF可见光激光器的实验装置示意图[73]

    Figure 6.  Schematic diagram of diode-pumped Q-switched Pr:YLF visible laser using Bi2Se3 as SA[73].

    图 7  Pr:YLF双脉冲激光器实验装置原理图[79]

    Figure 7.  Schematic diagram of Pr:YLF double pulse laser experiment setup[79]

    图 8  锁模Pr3+:LiYF4激光器的腔型[88]

    Figure 8.  Cavity configuration of the mode-locked Pr3+:LiYF4 laser[88]

    图 9  采用非线性镜像法的Pr:YAlO3锁模激光系统版图[92]

    Figure 9.  Layout of the Pr:YAlO3 mode-locked laser system using the nonlinear mirror method[92]

    图 10  InGaN蓝激光二极管泵浦的SESAM被动锁模Pr:YLF激光器原理图[94]

    Figure 10.  Schematic of the passively mode-locked Pr:YLF laser with a SESAM and pumped by InGaN blue LDs[94]

    图 11  掺Pr3+晶体可见光锁模综述[97]

    Figure 11.  Summary of Pr3+ doped crystal mode-locking in the visible range[97]

    图 12  二极管泵浦的604 nm和607 nm正交偏振SLM-Pr:YLF激光器实验装置[102]

    Figure 12.  Diode pumped 604 nm and 607 nm quadratically polarized SLM-Pr:YLF laser experimental setup[102]

  • [1]

    Binun P W, Boyd T L, Pessot M A, et al. Pr: YLF, intracavity-pumped, room-temperature upconversion laser[J]. Opt Lett, 1996, 21(23): 1915−1917. doi: 10.1364/OL.21.001915

    [2]

    Hashimoto K, Kannari F. Stimulated emission at an orange wavelength from cryogenically cooled Pr3+-doped LiYF4 and Y3Al5O12[J]. Jpn J Appl Phys, 2014, 46(2): 589−592.

    [3]

    Calmano T, Siebenmorgen J, Reichert F, et al. Crystalline Pr: SrAl12O19 waveguide laser in the visible spectral region[J]. Opt Lett, 2011, 36(23): 4620−4622. doi: 10.1364/OL.36.004620

    [4]

    Fibrich M, Jelínková H, Šulc J, et al. Pr: YAlO3 and Pr: LiYF4 laser emission comparison under GaN laser diode pumping[J]. Proc SPIE, 2010, 7578: 757828. doi: 10.1117/12.840008

    [5]

    Paboeuf D, Mhibik O, Bretenaker F, et al. Continuous-wave diode-pumped Pr3+: BaY2F8 orange laser[C]//Proceedings of 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, 2011.

    [6]

    Dong Y, Li S T, Zhang X H. All-solid-state blue laser pumped Pr: KY3F10-BBO ultraviolet laser at 305 nm[J]. Laser Phys Lett, 2011, 9(2): 116−119.

    [7]

    李纳, 刘斌, 施佼佼, 等. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573−589. doi: 10.15541/jim20180403

    Li N, Liu B, Shi J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. J Inorg Mater, 2019, 34(6): 573−589. doi: 10.15541/jim20180403

    [8]

    贾玉磊, 张凯云, 焦志勇. 新型掺杂稀土离子的可调谐激光晶体特性及应用[J]. 青岛大学学报(自然科学版), 2008, 21(3): 53−59.

    Jia Y L, Zhang K Y, Jiao Z Y. Overview of novel tunable transition metal ion doped laser crystals characteristics and application[J]. J Qingdao Univ (Nat Sci Ed), 2008, 21(3): 53−59.

    [9]

    孙敦陆, 张庆礼, 王召兵, 等. Nd: GSGG激光晶体的光谱性能研究[J]. 量子电子学报, 2005, 22(4): 570−573. doi: 10.3969/j.issn.1007-5461.2005.04.017

    Sun D L, Zhang Q L, Wang Z B, et al. Study on the spectral characteristics of Nd: GSGG laser crystal[J]. Chin J Quantum Electron, 2005, 22(4): 570−573. doi: 10.3969/j.issn.1007-5461.2005.04.017

    [10]

    Noginov M A, Loutts G B, Bonner C E, et al. Crystal growth and characterization of a new laser material, Nd: Ba5(PO4)3Cl[J]. J Opt Soc Am B, 2000, 17(8): 1329−1334. doi: 10.1364/JOSAB.17.001329

    [11]

    刘哲. Pr: YLF晶体光谱特性与激光性能研究[D]. 厦门: 厦门大学, 2013.

    Liu Z. Research on spectroscopic properties and laser performance of Pr: YLF crystal[D]. Xiamen: Xiamen University, 2013.

    [12]

    Adam J L, Sibley W A, Gabbe D R. Optical absorption and emission of LiYF4: Pr3+[J]. J Lumin, 1985, 33(4): 391−407. doi: 10.1016/0022-2313(85)90109-7

    [13]

    Caspers H H, Rast H E. Electronic and vibronic spectra of Pr3+ in LiYF4[J]. J Lumin, 1975, 10(6): 347−369. doi: 10.1016/0022-2313(75)90001-0

    [14]

    Esterowitz L, Bartoli F J, Allen R E. Spectroscopic determination of ground configuration energy levels in LiYF4: Pr3+[J]. J Lumin, 1979, 21(1): 1−16. doi: 10.1016/0022-2313(79)90030-9

    [15]

    Renfro G M, Windscheif J C, Sibley W A, et al. Optical transitions of Pr3+ and Er3+ ions in LiYF4[J]. J Lumin, 1980, 22(1): 51−68. doi: 10.1016/0022-2313(80)90045-9

    [16]

    Esterowitz L, Bartoli F J, Allen R E, et al. Energy levels and line intensities of Pr3+ in LiYF4[J]. Phys Rev B, 1979, 19(12): 6442−6455. doi: 10.1103/PhysRevB.19.6442

    [17]

    Reid M F, Richardson F S. Electric dipole intensity parameters for Pr3+ in LiYF4[J]. J Lumin, 1984, 31–32: 207−209.

    [18]

    Lakshman S V J, Buddhudu S. Racah and Judd-Ofelt parameters for Pr3+, Nd3+, and Er3+ ions in a laser liquid[J]. J Quant Spectrosc Radiat Transf, 1980, 24(3): 251−257. doi: 10.1016/0022-4073(80)90067-9

    [19]

    Esterowitz L, Allen R, Kruer M, et al. Blue light emission by a Pr: LiYF4 laser operated at room temperature[J]. J Appl Phys, 1977, 48(2): 650−652. doi: 10.1063/1.323648

    [20]

    German K R, Kiel A, Guggenheim H. Stimulated emission from PrCl3[J]. Appl Phys Lett, 1973, 22(3): 87−89. doi: 10.1063/1.1654573

    [21]

    Eichler H J, Liu B, Lu Z K, et al. Orange, red and deep-red flashlamp-pumped Pr3+: LiYF4 laser with improved output energy and efficiency[J]. Appl Phys B, 1994, 58(5): 421−424. doi: 10.1007/BF01081884

    [22]

    Knowles D S, Zhang Z, Gabbe D, et al. Laser action of Pr3+ in LiYF4 and spectroscopy of Eu2+- sensitized Pr in BaY2FR3[J]. IEEE J Quantum Electron, 1988, 24(6): 1118−1123. doi: 10.1109/3.235

    [23]

    Kaminskii A A. Visible lasing on five intermultiplet transitions of the ion Pr3+ in LiYF4[J]. Sov Phys Dokl, 1983, 28: 668.

    [24]

    Sandrock T, Danger T, Heumann E, et al. Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature[J]. Appl Phys B, 1994, 58(2): 149−151. doi: 10.1007/BF01082350

    [25]

    Danger T, Bleckmann A, Huber G. Stimulated emission and laser action of Pr3+-doped YAlO3[J]. Appl Phys B, 1994, 58(5): 413−420. doi: 10.1007/BF01081883

    [26]

    Richter A, Heumann E, Osiac E, et al. Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser[J]. Opt Lett, 2004, 29(22): 2638−2640. doi: 10.1364/OL.29.002638

    [27]

    Richter A, Heumann E, Osiac E, et al. Semiconductor laser pumping of a continuous-wave Pr3+: LiYF4 laser emitting at several wavelengths[C]//Proceedings of 2005 Conference on Lasers and Electro-Optics, 2005.

    [28]

    Richter A, Heumann E, Huber G, et al. Power scaling of semiconductor laser pumped Praseodymium-lasers[J]. Opt Express, 2007, 15(8): 5172−5178. doi: 10.1364/OE.15.005172

    [29]

    Ostroumov V, Seelert W, Hunziker L, et al. 522/261 nm cw generation of Pr: YLF laser pumped by OPS laser[J]. Proc SPIE, 2007, 6451: 645104. doi: 10.1117/12.705521

    [30]

    Ostroumov V, Seelert W. 1 W of 261 nm cw generation in a Pr3+: LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm[J]. Proc SPIE, 2008, 6871: 68711K. doi: 10.1117/12.767511

    [31]

    Fibrich M, Jelínková H, Šulc J, et al. Visible cw laser emission of GaN-diode pumped Pr: YAlO3 crystal[J]. Appl Phys B, 2009, 97(2): 363−367. doi: 10.1007/s00340-009-3679-5

    [32]

    Fibrich M, Šulc J, Jelínková H, et al. Two wavelength generation of Pr: YAlO3 laser by Lyot filter tuning[J]. Laser Phys Lett, 2010, 7(4): 290−293. doi: 10.1002/lapl.200910149

    [33]

    Strotkamp M, Schwarz T, Jungbluth B, et al. Efficient, green laser based on a blue-diode pumped rare-earth-doped fluoride crystal in an extremely short resonator[J]. Proc SPIE, 2010, 7578: 75780O.

    [34]

    Fibrich M, Šulc J, Jelínková H, et al. Continuous-wave blue generation of intracavity frequency-doubled Pr: YAP laser[J]. Opt Lett, 2010, 35(2): 214−216. doi: 10.1364/OL.35.000214

    [35]

    Xu B, Camy P, Doualan J L, et al. Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser[J]. Opt Express, 2011, 19(2): 1191−1197. doi: 10.1364/OE.19.001191

    [36]

    Gün T, Metz P, Huber G. Efficient continuous wave deep ultraviolet Pr3+: LiYF4 laser at 261.3nm[J]. Appl Phys Lett, 2011, 99(18): 181103. doi: 10.1063/1.3657150

    [37]

    王凤娟, 刘哲, 徐斌, 等. 蓝光激光二极管抽运Pr3+: YLF红绿可见光激光器[J]. 中国激光, 2013, 40(12): 1202002. doi: 10.3788/CJL201340.1202002

    Wang F J, Liu Z, Xu B, et al. Blue laser diode pumped Pr3+: YLF visible lasers[J]. Chin J Lasers, 2013, 40(12): 1202002. doi: 10.3788/CJL201340.1202002

    [38]

    Fibrich M, Jelínková H. Power-scaled Pr: YAlO3 laser at 747 and 720 nm wavelengths[J]. Laser Phys Lett, 2013, 10(3): 035801. doi: 10.1088/1612-2011/10/3/035801

    [39]

    Cornacchia F, Lieto A D, Tonelli M, et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals[J]. Opt Express, 2008, 16(20): 15932−15941. doi: 10.1364/OE.16.015932

    [40]

    Weichmann U, Mackens U, Moench H. 47.2: Solid-state lasers emitting at red, green and orange wavelengths for projection applications[J]. SID Symp Dig Tech Papers, 2011, 42(1): 681−684. doi: 10.1889/1.3621415

    [41]

    Hansen N O, Bellancourt A R, Weichmann U, et al. Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4[J]. Appl Opt, 2010, 49(20): 3864−3868. doi: 10.1364/AO.49.003864

    [42]

    Weichmann U, Bellancourt A R, Mackens U, et al. Solid-state lasers for projection[J]. J Soc Inf Dis, 2010, 18(10): 813−820. doi: 10.1889/JSID18.10.813

    [43]

    Gün T, Metz P, Huber G. Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm[J]. Opt Lett, 2011, 36(6): 1002−1004. doi: 10.1364/OL.36.001002

    [44]

    Metz P W, Reichert F, Moglia F, et al. High-power red, orange, and green Pr3+: LiYF4 lasers[J]. Opt Lett, 2014, 39(11): 3193−3196. doi: 10.1364/OL.39.003193

    [45]

    Iijima K, Kariyama R, Tanaka H, et al. Power scaling and Q-switched operation of a Pr3+ doped YLF laser pumped by four high power InGaN-Blue-LDs[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics Pacific Rim, 2015.

    [46]

    Tanaka H, Kannari F. Power scaling of continuous-wave visible Pr3+: YLF laser end-pumped by high power blue laser diodes[C]//Proceedings of the Advanced Solid State Lasers 2017, 2017.

    [47]

    Tanaka H, Fujita S, Kannari F. High-power visibly emitting Pr3+: YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes[J]. Appl Opt, 2018, 57(21): 5923−5928. doi: 10.1364/AO.57.005923

    [48]

    Liu Z, Cai Z P, Huang S L, et al. Diode-pumped Pr3+: LiYF4 continuous-wave deep red laser at 698 nm[J]. J Opt Soc Am B, 2013, 30(2): 302−305. doi: 10.1364/JOSAB.30.000302

    [49]

    Luo S Y, Yan X G, Cui Q, et al. Power scaling of blue-diode-pumped Pr: YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9nm[J]. Opt Commun, 2016, 380: 357−360. doi: 10.1016/j.optcom.2016.06.026

    [50]

    Lin X J, Zhu Y, Ji S H, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+: YLF lasers[J]. Opt Laser Technol, 2020, 129: 106281. doi: 10.1016/j.optlastec.2020.106281

    [51]

    Lin X J, Cui S W, Ji S H, et al. LD-pumped high-power high-efficiency orange vortex Pr3+: YLF4 lasers[J]. Opt Laser Technol, 2021, 133: 106571. doi: 10.1016/j.optlastec.2020.106571

    [52]

    Lin X J, Chen M P, Feng Q C, et al. LD-pumped high-power CW Pr3+: YLF Laguerre-Gaussian lasers at 639 nm[J]. Opt Laser Technol, 2021, 142: 107273. doi: 10.1016/j.optlastec.2021.107273

    [53]

    Ruan S C, Sutherland J M, French P M W, et al. Dual wavelength Pr: YLF laser[J]. Chin J Lasers B, 1995, 4(3): 207.

    [54]

    杨晗, 徐斌, 蔡志平, 等. 蓝光LD抽运Pr3+: LiYF4 604nm橙光激光器和红橙多波长激射[J]. 光学学报, 2014, 34(10): 1014003. doi: 10.3788/AOS201434.1014003

    Yang H, Xu B, Cai Z P, et al. Orange laser at 604 nm and multi-wavelength emissions of orange and red laser of Pr3+: LiYF4 pumped by blue LD[J]. Acta Opt Sin, 2014, 34(10): 1014003. doi: 10.3788/AOS201434.1014003

    [55]

    Luo S Y, Xu B, Cui S W, et al. Diode-pumped continuous-wave dual-wavelength c-cut Pr3+: LiYF4 laser at 696 and 719nm[J]. Appl Opt, 2015, 54(34): 10051−10054. doi: 10.1364/AO.54.010051

    [56]

    Lin X J, Huang X X, Liu B, et al. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr: YAlO3 crystal[J]. Opt Mater, 2018, 76: 16−20. doi: 10.1016/j.optmat.2017.12.016

    [57]

    Lin X J, Feng Q C, Zhu Y, et al. Diode-pumped wavelength-switchable visible Pr3+: YLF4 laser and vortex laser around 670 nm[J]. Opto-Electron Adv, 2021, 4(4): 210006.

    [58]

    陈家璧, 彭润玲. 激光原理及应用[M]. 第3版. 电子工业出版社, 2013: 94−95.

    [59]

    Kaminskii A A, Lyashenko A I, Isaev N P, et al. Quasi-cw Pr3+: LiYF4 laser with λ= 0.6395 μm and an average output power of 2.3 W[J]. Quantum Electron, 1998, 28(3): 187−188. doi: 10.1070/QE1998v028n03ABEH001192

    [60]

    Fibrich M, Jelínková H, Šulc J, et al. Radiation at the wavelength of 747 nm generated by flash-lamp pumped Pr: YAP laser[J]. Proc SPIE, 2008, 7138: 71380B.

    [61]

    Jelínková H, Fibrich M, Čech M, et al. Blue generation of flash-lamp pumped Pr: YAP laser by intracavity frequency doubling[J]. Laser Phys Lett, 2010, 7(1): 34−37. doi: 10.1002/lapl.200910110

    [62]

    Kojou J, Watanbe Y, Kannari F. High-power GaN diode pumped Q-switch Pr3+-doped LiYF4 laser[C]//Proceedings of 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009: 1–2.

    [63]

    Jelínková H, Fibrich M, Čech M, et al. Electro-optically Q-switched Pr: YAP laser generating at 747 nm[J]. Laser Phys Lett, 2009, 6(7): 517−520. doi: 10.1002/lapl.200910028

    [64]

    Fibrich M, Jelínková H, Cech M, et al. Pr: YAP generation in blue spectral region[J]. Proc SPIE, 2009, 7354: 735415. doi: 10.1117/12.821946

    [65]

    Fibrich M, Jelínková H, Šulc J, et al. Flash-lamp pumped Pr: YAP laser operated at wavelengths of 747 nm and 662 nm[J]. Proc SPIE, 2009, 7193: 71932N. doi: 10.1117/12.808907

    [66]

    Kojou J, Watanabe Y, Kojima Y, et al. Q-switching of Pr3+-doped LiYF4 visible lasers pumped by a high-power GaN diode laser[C]//CLEO/QELS: 2010 Laser Science to Photonic Applications, San Jose, 2010: 1–2.

    [67]

    Savitski V G, Ranieri I M, Krysa A B, et al. Passively Q-switched Pr:YLF laser[C]//Proceedings of the CLEO: Science and Innovations 2011, 2011.

    [68]

    Kojou J, Watanabe Y, Kojima Y, et al. Intracavity second-harmonic generation at 320 nm of an actively Q-switched Pr: LiYF4 laser[J]. Appl Opt, 2012, 51(9): 1382−1386. doi: 10.1364/AO.51.001382

    [69]

    Kojou J, Abe R, Kariyama R, et al. InGaN diode pumped actively Q-switched intracavity frequency doubling Pr: LiYF4 261 nm laser[J]. Appl Opt, 2014, 53(10): 2030−2036. doi: 10.1364/AO.53.002030

    [70]

    Cheng Y J, Peng J, Xu B, et al. Passive Q-switching of Pr: LiYF4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber[J]. Opt Laser Technol, 2017, 88: 275−279. doi: 10.1016/j.optlastec.2016.09.026

    [71]

    Demesh M, Marzahl D T, Yasukevich A, et al. Passively Q-switched Pr: YLF laser with a Co2+: MgAl2O4 saturable absorber[J]. Opt Lett, 2017, 42(22): 4687−4690. doi: 10.1364/OL.42.004687

    [72]

    Fibrich M, Doroshenko M, Šulc J, et al. InGaN diode pumped Pr: SrF2 laser at 639 nm wavelength[J]. Proc SPIE, 2017, 10082: 1008220.

    [73]

    Luo S Y, Yan X G, Xu B, et al. Few-layer Bi2Se3-based passively Q-switched Pr: YLF visible lasers[J]. Opt Commun, 2018, 406: 61−65. doi: 10.1016/j.optcom.2017.05.068

    [74]

    Tian Q Y, Xu B, Li N, et al. Direct generation of orthogonally polarized dual-wavelength continuous-wave and passively Q-switched vortex beam in diode-pumped Pr: YLF lasers[J]. Opt Lett, 2019, 44(22): 5586−5589. doi: 10.1364/OL.44.005586

    [75]

    Wang P C, Yang Q, Wang X Y. Gold nanostars as the saturable absorber for a Q-switched visible solid-state laser[J]. Appl Opt, 2019, 58(25): 6733−6736. doi: 10.1364/AO.58.006733

    [76]

    Xu B, Luo S Y, Yan X G, et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers[J]. IEEE J Select Top Quant Electron, 2017, 23(5): 1900507. doi: 10.1109/JSTQE.2016.2630277

    [77]

    Yang Q, Cao Y P, Liu X Q, et al. Passive Q-switching of Pr: LiYF4 visible laser using SnS2 as a saturable absorber[J]. Opt Laser Technol, 2019, 112: 183−187. doi: 10.1016/j.optlastec.2018.11.023

    [78]

    Li N, Xu B, Cui S W, et al. High-order vortex generation from CW and passively Q-switched Pr: YLF visible lasers[J]. IEEE Photon Technol Lett, 2019, 31(17): 1457−1460. doi: 10.1109/LPT.2019.2931907

    [79]

    Li Y, Jin L, Dai W C, et al. Study of an acousto-optic Q-switched double pulse output Pr: YLF all solid-state laser[J]. Laser Phys, 2020, 30(12): 125002. doi: 10.1088/1555-6611/abc473

    [80]

    Hara Y, Fujita S, Shioya Y, et al. 640-nm Pr: YLF regenerative amplifier seeded by gain-switched laser diode pulses[J]. Appl Opt, 2020, 59(17): 5098−5101. doi: 10.1364/AO.395801

    [81]

    Wu H, Xu J L, Zhang C, et al. Nonlinear saturable absorption in antimonene quantum dots for passively Q-switching Pr: YLF laser[J]. Nano Sel, 2021, 2(9): 1741−1749. doi: 10.1002/nano.202000101

    [82]

    Qi Y Y, Huo X W, Bai Z X, et al. High-energy, nanosecond orange laser at 604 nm based on Pr: YLF crystal at room temperature[J]. Results Phys, 2021, 26: 104382. doi: 10.1016/j.rinp.2021.104382

    [83]

    Quan C, Sun D L, Zhang H L, et al. Performance of a 968-nm laser-diode side-pumped, electro-optical Q-switched Er, Pr: YAP laser with emission at 2.7 µm[J]. Opt Eng, 2021, 60(6): 066112.

    [84]

    Han L L, Yang Z X, Yang Q, et al. Visible nonlinear optical properties of tellurium and application as saturable absorber[J]. Opt Laser Technol, 2021, 137: 106817. doi: 10.1016/j.optlastec.2020.106817

    [85]

    Ruan S, Sutherland J M, French P M W, et al. Kerr lens modelocked solid state laser in the red (639 nm)[J]. Electron Lett, 1994, 30(19): 1601−1602. doi: 10.1049/el:19941058

    [86]

    Tong Y P, Sutherland J M, French P M W, et al. Self-starting Kerr-lens mode-locked femtosecond Cr4+: YAG and picosecond Pr3+: YLF solid-state lasers[J]. Opt Lett, 1996, 21(9): 644−646. doi: 10.1364/OL.21.000644

    [87]

    Sutherland J M, French P M W, Taylor J R, et al. Visible continuous-wave laser transitions in Pr3+: YLF and femtosecond pulse generation[J]. Opt Lett, 1996, 21(11): 797−799. doi: 10.1364/OL.21.000797

    [88]

    Gaponenko M, Metz P W, Härkönen A, et al. SESAM mode-locked red praseodymium laser[J]. Opt Lett, 2014, 39(24): 6939−6941. doi: 10.1364/OL.39.006939

    [89]

    Zhang Y X, Yu H H, Zhang H J, et al. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate[J]. Opt Lett, 2016, 41(12): 2692−2695. doi: 10.1364/OL.41.002692

    [90]

    Iijima K, Kariyama R, Tanaka H, et al. Pr3+: YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers[J]. Appl Opt, 2016, 55(28): 7782−7787. doi: 10.1364/AO.55.007782

    [91]

    Luo S Y, Xu B, Xu H Y, et al. High-power self-mode-locked Pr: YLF visible lasers[J]. Appl Opt, 2017, 56(34): 9552−9555. doi: 10.1364/AO.56.009552

    [92]

    Fibrich M, Šulc J, Zavadilová A, et al. Nonlinear mirror mode-locked Pr: YAlO3 laser[J]. Laser Phys, 2017, 27(5): 055801. doi: 10.1088/1555-6611/aa66f5

    [93]

    Tanaka H, Iijima K, Sawada R, et al. Solid-state lasers directly pumped by InGaN-based green and blue laser diodes[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim, 2017: 1–4.

    [94]

    Luo S Y, Cai Z P, Xu H Y, et al. Diode-pumped 915-nm Pr: YLF laser passively mode-locked with a SESAM[J]. Opt Express, 2018, 26(19): 24695−24701. doi: 10.1364/OE.26.024695

    [95]

    Li N, Huang J J, Xu B, et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr: LiYF4 visible laser[J]. Photonics Res, 2019, 7(11): 1209−1213. doi: 10.1364/PRJ.7.001209

    [96]

    Sugiyama N, Fujita S, Hara Y, et al. Diode-pumped 640 nm Pr: YLF regenerative laser pulse amplifier[J]. Opt Lett, 2019, 44(13): 3370−3373. doi: 10.1364/OL.44.003370

    [97]

    Zhang Y X, Miao R L, Lu D Z, et al. Kerr-lens mode-locked Pr3+: LuLiF4 laser[J]. Opt Lett, 2019, 44(15): 3665−3668. doi: 10.1364/OL.44.003665

    [98]

    Jin L, Dai W C, Yu Y J, et al. Single longitudinal mode Q-switched operation of Pr: YLF laser with pre-lase and Fabry–Perot etalon technology[J]. Opt Laser Technol, 2020, 129: 106294. doi: 10.1016/j.optlastec.2020.106294

    [99]

    Li Q S, Zhu L X, Zhang X H, et al. The effect of the depth of single longitudinal mode modulation in Q-switching pre-Pr3+: YLF laser[J]. Opt Commun, 2016, 372: 250−254. doi: 10.1016/j.optcom.2016.04.006

    [100]

    Luo S Y, Cai Z P, Xu H Y, et al. Direct oscillation at 640-nm in single longitudinal mode with a diode-pumped Pr: YLF solid-state laser[J]. Opt Laser Technol, 2019, 116: 112−116. doi: 10.1016/j.optlastec.2019.03.025

    [101]

    Dai W C, Jin L, Dong Y, et al. The effect of injected energy on low energy single longitudinal mode pre-lase Q-switched Pr: YLF laser[J]. J Appl Math Phys, 2019, 7(12): 2968−2978. doi: 10.4236/jamp.2019.712207

    [102]

    Zhang Y S, Zhou L B, Zhang T, et al. Blue diode-pumped single-longitudinal-mode Pr: YLF lasers in orange spectral region[J]. Opt Laser Technol, 2020, 130: 106373. doi: 10.1016/j.optlastec.2020.106373

    [103]

    窦微, 浦双双, 牛娜, 等. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器[J]. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018

    Wei D, Pu S S, Niu N, et al. Combined dual-wavelength laser diode beam end-pumped single longitudinal mode Pr3+: LiYF4 360 nm ultraviolet laser[J]. Acta Phys Sin, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018

  • 加载中

(13)

计量
  • 文章访问数:  7407
  • PDF下载数:  1685
  • 施引文献:  0
出版历程
收稿日期:  2021-11-15
修回日期:  2022-02-04
网络出版日期:  2022-04-20
刊出日期:  2022-04-25

目录

/

返回文章
返回