FLEET光学系统参数优化

王建新,陈爽,陈力,等. FLEET光学系统参数优化[J]. 光电工程,2022,49(4): 210318. doi: 10.12086/oee.2022.210318
引用本文: 王建新,陈爽,陈力,等. FLEET光学系统参数优化[J]. 光电工程,2022,49(4): 210318. doi: 10.12086/oee.2022.210318
Wang J X, Chen S, Chen L, et al. Parameters optimization of FLEET optical system[J]. Opto-Electron Eng, 2022, 49(4): 210318. doi: 10.12086/oee.2022.210318
Citation: Wang J X, Chen S, Chen L, et al. Parameters optimization of FLEET optical system[J]. Opto-Electron Eng, 2022, 49(4): 210318. doi: 10.12086/oee.2022.210318

FLEET光学系统参数优化

  • 基金项目:
    国家自然科学基金青年基金资助项目(11902277);国家自然科学基金面上项目(62165011,51765054)
详细信息
    作者简介:
    通讯作者: 王建新,wangjianxinkitty@163.com 陈力,chenli_03@163.com 白福忠,fzbaiim@163.com
  • 中图分类号: O439

Parameters optimization of FLEET optical system

  • Fund Project: National Natural Science Foundation of China (11902277, 62165011, 51765054)
More Information
  • FLEET流场测速时,荧光丝的形态和特征影响流场速度测量的精度和覆盖范围,而这些参数又取决于FLEET光学系统参数,有必要对FLEET光学系统参数对荧光丝的影响规律进行研究。本文研究了光学系统的主要参数飞秒激光脉冲能量和聚焦透镜焦距对荧光丝长度、光丝峰值强度、功率密度、信噪比的影响,并在最优实验参数条件下,对不同压强下空气飞秒荧光丝的寿命进行探测。实验表明,飞秒荧光丝的激发存在功率密度阈值,本实验中大致在2×1013 W/cm2,光学系统参数优化应以飞秒荧光丝信噪比高且光丝强度分布均匀为基准。飞秒荧光丝的寿命约为几微秒,因此,两次测速采样的时间间隔应小于微秒量级。本文研究结果可以为FLEET光学系统主要参数确定提供依据。

  • Overview: Femtosecond laser electronic excitation tagging (FLEET) is proposed in 2011 as Molecular tagging velocity measurement technique. FLEET uses one femtosecond laser and one optical detector (usually ICCD) and one signal generator, and works with nitrogen fluorescence as tagging tracer. Its experimental system is simple and no injection problem of tracer particle, hence has a wide application prospect. Fluorescent filament features such as size and intensity distribution are very vital to the velocity measurement accuracy, which are decided by the optical system parameters. Therefore, it is particularly important to study the influence of optical system parameters on it.

    In this paper, the effects of laser pulse energy and focal length are researched on the length, peak intensity, power density and signal-to-noise ratio of fluorescent filament by the experiment, and the threshold laser power of excited air fluorescent filament and the optimal system parameters are given. With optimal optical system parameters, the lifetime of still air fluorescence under 4 different pressures are shown.

    The results show that there is a power density threshold for excitation of femtosecond fluorescent filaments. Only when femtosecond laser power is greater than threshold, the fluorescent filaments will be generated near the rear focal plane of the focusing lens. The minimum power density required for femtosecond laser to excite air fluorescent filaments is about 2×1013 W/cm2. When the femtosecond laser energy is constant, the longer the focal length is, the longer the filament and the lower the signal-to-noise ratio are; When the focal length is constant, the length of the fluorescent filament becomes longer with the increase of laser energy, and the central position of the fluorescent filament in the x-axis direction moves toward the focusing lens. Within the parameter range of the experimental study, when the focal length of the focusing lens is 500 mm and the laser energy is 3 mJ, the quality of the fluorescent filament is relatively excellent. The filament has relative uniform intensity distribution and high signal-to-noise ratio. Under these parameters, the lifetime of air fluorescent under four pressures are about few microseconds. Therefore, when the flow field velocity is measured by FLEET, the time interval between two measurement samples should be less than a few microseconds. This research provides the basis for the optimization of optical system parameters in the flow field velocity measurement by FLEET.

  • 加载中
  • 图 1  FLEET实验光路示意图

    Figure 1.  FLEET experiment schematic diagram

    图 2  标尺校准。

    Figure 2.  Scaling calibration.

    图 3  不同焦距和激光能量下的空气飞秒荧光丝对比图。

    Figure 3.  Air fluorescent filament images excited by femtosecond laser with different focal length and laser energy.

    图 4  飞秒荧光丝的有效区域界定流程。

    Figure 4.  Process for definition of effective area of fluorescent filament.

    图 5  飞秒荧光丝几何特征提取。

    Figure 5.  Geometric feature extraction of fluorescent filament.

    图 6  激光功率和聚焦透镜焦距,对飞秒荧光丝的信噪比和光丝长度影响。

    Figure 6.  Fluorescent filament SNR and length vs laser power and focal length.

    图 7  不同压强下,空气飞秒荧光丝归一化峰值强度随延迟时间变化情况

    Figure 7.  The normalized peak density of air fluorescent filament for different time delay under different pressures

    表 1  激光功率和聚焦透镜焦距长度对光丝最强峰值的影响

    Table 1.  The maximum gray affected by laser power and focal length

    Laser energy
    /mJ
    Focal length of focus lens/mm
    17530050010001500
    0.5237591216764750无信号
    1.0205599384023751950无信号
    1.53456415377361428821071
    2.05412989239650437111265
    2.557588913876784445081497
    3.0610190178811090051181795
    下载: 导出CSV

    表 2  透镜后焦平面处的激光功率密度随激光能量和聚焦透镜焦距变化情况

    Table 2.  The laser power density at back focal plane with different laser power and focal length/(W/cm2)

    Laser energy
    /mJ
    Focal length of focus lens/mm
    17530050010001500
    0.57.22×10142.46×10148.84×10142.21×10139.82×1012
    1.01.44×10154.91×10141.77×10144.42×10131.96×1013
    1.52.17×10157.37×10142.65×10146.63×10132.95×1013
    2.02.89×10159.82×10143.54×10148.84×10133.93×1013
    2.53.61×10151.23×10154.42×10141.11×10144.91×1013
    3.04.33×10151.47×10155.30×10141.33×10145.89×1013
    下载: 导出CSV
  • [1]

    Michael JB, Edwards MR, Dogariu A, Miles RB. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air[J]. Appl Opt, 2011, 50(26): 5158−5162. doi: 10.1364/AO.50.005158

    [2]

    Edwards M R, Dogariu A, Miles R B. Simultaneous temperature and velocity measurement in unseeded air flows with FLEET[C]//Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, 2013: 1–8. doi: 10.2514/6.2013-43.

    [3]

    DeLuca N J, Miles R B, Kulatilaka W D, et al. Femtosecond laser electronic excitation tagging (FLEET) fundamental pulse energy and spectral response[C]//Proceedings of 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Atlanta, GA, 2014: 1–7. doi: 10.2514/6.2014-2227.

    [4]

    Ceglia G, Cafiero G, Astarita T. Experimental investigation on the three-dimensional organization of the flow structures in precessing jets by tomographic PIV[J]. Exp Ther Fluid Sci, 2017, 89: 166−180. doi: 10.1016/j.expthermflusci.2017.08.008

    [5]

    陈卫, 伍越, 罗杰, 等. 点测量激光吸收光谱技术理论分析[J]. 光电工程, 2019, 46(10): 180575.

    Chen W, Wu Y, Luo J, et al. Theoretical research of point-measurement laser absorption spectroscopy[J]. Opto-Electron Eng, 2019, 46(10): 180575.

    [6]

    Calvert C D, Zhang Y B, Miles R B. Characterizing FLEET for aerodynamic measurements in various gas mixtures and non-air environments[C]//Proceedings of 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Washington, D. C. , 2016: 1–16. doi: 10.2514/6.2016-3206.

    [7]

    Fisher J M, Smyser M E, Slipchenko M N, et al. Burst-mode femtosecond laser electronic excitation tagging for kHz-MHz seedless velocimetry[J]. Opt Lett, 2020, 45(2): 335−338. doi: 10.1364/OL.380109

    [8]

    Hill J L, Hsu P S, Jiang N B, et al. Hypersonic N2 boundary layer flow velocity profile measurements using FLEET[J]. Appl Opt, 2021, 60(15): C38−C46. doi: 10.1364/AO.417470

    [9]

    Zhang Y B, Miles R B. Femtosecond laser tagging for velocimetry in argon and nitrogen gas mixtures[J]. Opt Lett, 2018, 43(3): 551−554. doi: 10.1364/OL.43.000551

    [10]

    Zhang D Y, Li B, Gao Q, et al. Applicability of femtosecond laser electronic excitation tagging in combustion flow field velocity measurements[J]. Appl Spectrosc, 2018, 72(12): 1807−1813. doi: 10.1177/0003702818788857

    [11]

    Yang W B, Zhou J N, Chen L, et al. Temporal characterization of heating in femtosecond laser filamentation with planar Rayleigh scattering[J]. Opt Express, 2021, 29(10): 14883−14893. doi: 10.1364/OE.418654

    [12]

    Wang J X, Chen S, Chen L, et al. Measurement of FLEET influence on ambient air temperature by Rayleigh scattering[J]. Opt Laser Technol, 2022, 145: 107456. doi: 10.1016/j.optlastec.2021.107456

    [13]

    Limbach C M, Miles R B. Characterization of dissociation and gas heating in femtosecond laser plasma with planar Rayleigh scattering and Rayleigh scattering polarimetry[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Floridan, 2015: 1–17. doi: 10.2514/6.2015-0932.

    [14]

    Limbach C M, Miles R B. Rayleigh scattering measurements of heating and gas perturbations accompanying femtosecond laser tagging[J]. AIAA J, 2017, 55(1): 112−120. doi: 10.2514/1.J054772

    [15]

    Burns R A, Danehy P M, Peters C J. Multiparameter flowfield measurements in high-pressure, cryogenic environments using femtosecond lasers[C]//Proceedings of 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Washington, DC, 2016: 1–27.

    [16]

    廖钦楷, 林珊玲, 林志贤, 等. 基于改进Otsu的电润湿缺陷图像分割[J]. 光电工程, 2020, 47(6): 190388.

    Liao Q K, Lin S L, Lin Z X, et al. Electrowetting defect image segmentation based on improved Otsu method[J]. Opto-Electron Eng, 2020, 47(6): 190388.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  3281
  • PDF下载数:  840
  • 施引文献:  0
出版历程
收稿日期:  2021-09-30
修回日期:  2022-01-14
刊出日期:  2022-04-25

目录

/

返回文章
返回