偏振哈特曼波前探测技术研究

郭庭,张彬,顾乃庭,等. 偏振哈特曼波前探测技术研究[J]. 光电工程,2021,48(7): 210076. doi: 10.12086/oee.2021.210076
引用本文: 郭庭,张彬,顾乃庭,等. 偏振哈特曼波前探测技术研究[J]. 光电工程,2021,48(7): 210076. doi: 10.12086/oee.2021.210076
Guo T, Zhang B, Gu N T, et al. Research on polarization Hartmann wavefront detection technology[J]. Opto-Electron Eng, 2021, 48(7): 210076. doi: 10.12086/oee.2021.210076
Citation: Guo T, Zhang B, Gu N T, et al. Research on polarization Hartmann wavefront detection technology[J]. Opto-Electron Eng, 2021, 48(7): 210076. doi: 10.12086/oee.2021.210076

偏振哈特曼波前探测技术研究

  • 基金项目:
    国家自然科学基金青年基金和优秀青年基金资助项目(61905252,12022308);中国科学院青年创新促进会资助项目(2018412)
详细信息
    作者简介:
    *通讯作者: 张彬(1969-),女,博士,教授,博士生导师,主要从事激光传输与控制、高功率激光技术及器件等领域的研究。E-mail:zhangbinff@sohu.com 顾乃庭(1984-),男,博士,研究员,博士生导师,主要从事光学成像、自适应光学及光场探测技术的研究。E-mail:gunaiting@ioe.ac.cn
  • 中图分类号: TH751; O436.3

Research on polarization Hartmann wavefront detection technology

  • Fund Project: National Natural Science Foundation of China Youth Fund and Outstanding Youth Fund (61905252, 12022308), and Youth Innovation Promotion Association, Chinese Academy of Sciences (2018412)
More Information
  • 针对白天强背景条件下自适应光学系统哈特曼传感器信背比低、波前探测精度不高等问题,利用人造目标与强背景偏振特性差异,提出基于偏振调制的哈特曼波前探测方法,将传统的哈特曼波前探测从强度维度转换到偏振维度,有效提升信背比和波前探测精度。阐述了偏振哈特曼波前探测基本方法和原理,并通过数值模拟仿真验证了方法的正确性和准确性。研究结果表明:偏振哈特曼探测技术能够有效提升强背景条件下信背比和波前探测精度,显著增强自适应光学系统在强背景条件下的工作能力。

  • Overview: After more than 40 years of continuous development, adaptive optics has gradually matured in theoretical exploration and engineering applications, and has been widely used in various fields. The Hartmann wavefront sensor is an important part of the adaptive optics system and is currently the most widely used wavefront detector in the adaptive optics system. When the Hartmann wavefront sensor performs wavefront detection in strong background occasions like daytime, the interference of the strong background will increase the centroid calculation error in the wavefront calculation and significantly reduce the wavefront detection accuracy, which severely limits working hours of the adaptive optics system.

    Aiming at the application scenario of a large back-to-signal ratio, a new polarized Hartmann wavefront detection technology is proposed. The polarized Hartmann wavefront detector adds a polarization modulator in front of the microlens array to obtain intensity detection images under different polarization modulation states. The polarized difference principle is used to convert the directly detected intensity signal into a polarization signal, and finally, the Hartmann wavefront detection result is transformed from the intensity dimension to the polarization dimension by using the difference between the polarization characteristics of the detection target and the background light. This article describes the basic methods and principles of polarized Hartmann wavefront detection technology, and then conducts numerical simulations for linear polarization signal wavefront detection in natural light scenes, which are as follows. First, the wavefront restoration results before and after adding the strong background are compared to clarify the influence of the strong background on the Hartmann wavefront restoration results. Then, the strong background processing and wavefront restoration calculation under different back signal ratios are launched. Finally, the removal effect of the strong background and the wavefront restoration error of the subtracted global threshold method, subtracted local adaptive threshold method, and polarization difference method is compared.

    Theoretical and simulation results show that the polarized Hartmann wavefront detection technology has a good removal effect on strong background, and has high wavefront restoration accuracy. This improves the signal-to-background ratio of Hartmann wavefront detection to a certain extent, and improves the accuracy of wavefront detection under strong background conditions. Therefore, the polarization Hartmann wavefront detection technology has high feasibility for wavefront detection in strong background scenes, and has a great effect on the application expansion of adaptive optics in daytime scenes.

  • 加载中
  • 图 1  强背景场景下的哈特曼波前探测示意图

    Figure 1.  Schematic map of the Hartmann sensor under the strong background scene

    图 2  哈特曼波前探测光斑阵列图。

    Figure 2.  Spot array of the Hartmann-Shack wavefront sensor.

    图 3  偏振哈特曼波前探测技术原理示意图

    Figure 3.  Basic principle of the proposed polarization Hartmann wavefront sensor

    图 4  混合光偏振态示意图。

    Figure 4.  Schematic map of the polarization state of mixed light.

    图 5  偏振哈特曼传感器的偏振调制示意图

    Figure 5.  Schematic map of polarization modulation of the polarization Hartmann sensor

    图 6  目标信号子孔径光斑图像、噪声分布及其复原波前和Zernike系数。

    Figure 6.  Reference signal sub-aperture spot image and its restored wavefront and Zernike coefficient.

    图 7  混合信号子孔径光斑图像及其复原波前图像和波前的Zernike系数。

    Figure 7.  Mixed signal sub-aperture spot image and its wavefront restoration image and wavefront Zernike coefficients.

    图 8  各方式对强背景处理后的子孔径光斑图像。

    Figure 8.  Sub-aperture spot image processed by various methods for strong background.

    图 9  经三种方式处理后的复原波前图像及其Zernike系数表达。

    Figure 9.  The restored wavefront image and its Zernike coefficient expression after three processing methods.

    图 10  采用不同方法时的波前复原误差分布。

    Figure 10.  Wavefront restoration error using different methods.

    图 11  不同背信比下的波前复原误差RMS值曲线。

    Figure 11.  RMS value curve of wavefront restoration error for different RBS.

  • [1]

    Jiang W H, Li M Q, Tang G M, et al. Adaptive optical image compensation experiments on stellar objects[J]. Opt Eng, 1995, 34(1): 15-20. doi: 10.1117/12.184078

    [2]

    Zhang R J, Li H G. Hartmann-Shack wavefront sensing and wavefront control algorithm[J]. Proc SPIE, 1990, 1271: 82-93. doi: 10.1117/12.20396

    [3]

    姜文汉, 鲜浩, 杨泽平, 等. 哈特曼波前传感器的应用[J]. 量子电子学报, 1995, 15(2): 228-235. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU199802014.htm

    Jiang W H, Xian H, Yang Z P, et al. Applications of Shack-Hartmann wavefront sensor[J]. J Quantum Electron, 1995, 15(2): 228-235. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU199802014.htm

    [4]

    Li H G, Jiang W H. Application of H-S wavefront sensor for quality diagnosis of optical system and light beam[C]//ICO-16 Satellite Conference on Active and Adaptive Optics, 1993: 369-376.

    [5]

    陈浩, 魏凌, 李恩德, 等. 基于B样条函数的快速波前复原[J]. 光电工程, 2021, 48(2): 60-69. doi: 10.12086/oee.2021.200160

    Chen H, Wei L, Li E D, et al. A B-spline based fast wavefront reconstruction algorithm[J]. Opto-Electron Eng, 2021, 48(2): 60-69. doi: 10.12086/oee.2021.200160

    [6]

    Li C H, Xian H, Rao C H, et al. Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system[J]. Opt Lett, 2006, 31(19): 2821-2823. doi: 10.1364/OL.31.002821

    [7]

    姜文汉, 鲜浩, 沈锋. 夏克-哈特曼波前传感器的探测误差[J]. 量子电子学报, 1998, 15(2): 218-227. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU199802013.htm

    Jiang W H, Xian H, Shen F. Detection error of Shack-Hartmann wavefront sensor[J]. J Quantum Electron, 1998, 15(2): 218-227. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU199802013.htm

    [8]

    Beckers J M, Cacciani A. Using laser beacons for daytime adaptive optics[J]. Experimental Astronomy, 2001, 11(2): 133-143. doi: 10.1023/A:1011140920850

    [9]

    Gonglewski J D, Highland R G, Dayton D C, et al. ADONIS: Daylight imaging through atmospheric turbulence[J]. Proc SPIE, 1996, 2827: 152-161. doi: 10.1117/12.255078

    [10]

    徐维安. 光谱滤波装置在白天测星中的应用[J]. 光学精密工程, 1996, 4(4): 84-88. doi: 10.3321/j.issn:1004-924X.1996.04.016

    Xu W A. Application of spectral filter device in measuring stellar daytime[J]. Opt Precis Eng, 1996, 4(4): 84-88. doi: 10.3321/j.issn:1004-924X.1996.04.016

    [11]

    李旭旭, 李新阳, 王彩霞. 哈特曼传感器子孔径光斑的局部自适应阈值分割方法[J]. 光电工程, 2018, 45(10): 170699. doi: 10.12086/oee.2018.170699

    Li X X, Li X Y, Wang C X. Local adaptive threshold segmentation method for subaperture spot of Shack-Hartmann sensor[J]. Opto-Electron Eng, 2018, 45(10): 170699. doi: 10.12086/oee.2018.170699

    [12]

    张锐进, 鲜浩, 饶长辉, 等. 偏振滤波白天抑制天光背景作用分析[J]. 光学学报, 2012, 32(5): 0501003. doi: 10.3788/AOS201232.0501003

    Zhang R J, Xian H, Rao C H, et al. study on effect of polarization filter for suppressing sky background light in daytime[J]. Acta Opt Sin, 2012, 32(5): 0501003. doi: 10.3788/AOS201232.0501003

    [13]

    范真涛, 汤媛媛, 魏凯, 等. 光谱椭偏系统光源和光谱仪偏振相关系数测量[J]. 光电工程, 2019, 46(12): 180507. doi: 10.12086/oee.2019.180507

    Fan Z T, Tang Y Y, Wei K, et al. Measurement of polarization correlation coefficients of light source and spectrometer in spectroscopic ellipsometry[J]. Opto-Electron Eng, 2019, 46(12): 180507. doi: 10.12086/oee.2019.180507

  • 加载中

(11)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-03-17
修回日期:  2021-05-11
刊出日期:  2021-07-15

目录

/

返回文章
返回